985 research outputs found

    Incorporation of Functionalized Polyhedral Oligomeric Silsesquioxane Nanomaterials as Reinforcing Agents for Impact Ice Mitigating Coatings

    Get PDF
    In-flight, aircraft are exposed to a wide range of environments. One commonly exposed environment are clouds containing super-cooled water droplets. These water drop- lets exist in a metastable state below the freezing point of water, in the range of 0 to -20C. As the vehicle impacts the droplets, latent heat is released and within milliseconds the droplets convert to ice. This process is referred to as impact icing or in-flight icing.1 Impact icing is a major concern for aircraft since it can lead to degraded aerodynamic performance and, if left un- treated, can lead to loss of the vehicle. Active approaches (i.e., pneumatic boots, heated air ducts) typically utilized in mitigating in-flight ice accretion significantly increases vehicle weight and cannot be applied to all aircraft.1-3 A passive approach based on coatings is desired, but durability issues are a concern, especially on the wing leading edge.3 Nanomaterials have been shown to afford significant improvement in coating and composite physical properties at low loading levels.4 In this study, Polyhedral Oligomeric Silsesquioxane (POSS) nanomaterials have been shown to increase coating durability. Also, with wide variety of functionalities present on the arm structure, POSS nanomaterials have been shown to readily alter coating surface chemistry to mitigate impact ice adhesion from -16 to -8C in a simulated in-flight icing environment

    Apparent movement phenomena on CRT displays - Threshold determinations of apparent movements of pulsed light sources

    Get PDF
    Apparent movement phenomena on cathode ray tube displays - threshold determinations of apparent movements of pulsed light source

    Reinforcing Additives for Ice Adhesion Reduction Coatings

    Get PDF
    Adhesion of contaminants has been identified as a ubiquitous issue for aeronautic exterior surfaces. In-flight icing is particularly hazardous for all aircraft and can be experienced throughout the year under the appropriate environmental conditions. On larger vehicles, the accretion of ice could result in loss of lift, engine failure, and potentially loss of vehicle and life were it not for active deicing or anti-icing equipment. Smaller vehicles though cannot support the mass and mechanical complexity of active ice mitigating systems and thus must rely upon passive approaches or avoid icing conditions altogether. One approach that may be applicable to all aircraft is the use of coatings. Durability remains an issue and has prevented realization of coatings for leading edge contamination mitigation. In this work, epoxy coatings were generated as a passive approach for ice adhesion mitigation and methods to improve durability were evaluated. Highly cross-linked epoxy systems can be extremely rigid, which could have deleterious consequences regarding application as a leading edge coating. Incorporation of flexible species, such as poly(ethylene glycol) may improve coating toughness.8 Additionally, core-shell rubber (CSR) particles have been utilized to improve fracture toughness of epoxies.9 Both of these more established additives are investigated in this work. An emerging additive that is also evaluated here is holey graphene. This nanomaterial possesses many of the advantageous properties of graphene (excellent mechanical properties, thermal and electrical conductivity, large surface area, etc.) while also exhibiting behaviors associated with flexible, porous materials (i.e., compressibility, increased permeation, etc.). Holey graphene, HG, was synthesized by the oxidation of defect-rich sites on graphene sheets through controlled thermal expo-sure.10 It is envisioned that the porous nature of HG would allow resin penetration through the graphitic plane, resulting in better interfacial interaction and therefore better translation of the nanomaterials properties to the surrounding matrix

    The Effect of Stainless Steel 304 Surface Roughness on Ice Adhesion Shear Strength of Accreted Impact Ice

    Get PDF
    Aircraft in-flight icing is problematic due to the ad-verse effect on vehicle performance. It occurs when supercooled water droplets (SCWD) present in clouds, under the appropriate environmental conditions, col-lide with the aircraft surface resulting in accretion of ice (i.e., impact icing). Impact ice can range from clear/glaze to rime or a combination of the two (i.e., mixed) with the type determined by the air temperature (0 to -20C), liquid water content (LWC, 0.3-0.6 g/cu.m), and droplet size [median volumetric diameter (MVD) of 15-40 m] present during accretion.1 These impact icing events generally occur at temperatures ranging from 0 to -20C. Below -20C, ice crystals dominate the environment and typically do not adhere to the aircraft surface. A main difference between an impact icing occurrence and a slow growth icing (i.e., freezer ice) one is the speed of the icing event. Besides environmental conditions, ice adhesion strength (IAS) to a metallic substrate depends upon surface roughness. It is known that increasing surface roughness and decreasing temperature lead to in-creases in IAS

    Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    Get PDF
    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques

    River Restoration in the Twenty-First Century: Data and Experiential Knowledge to Inform Future Efforts

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71999/1/j.1526-100X.2007.00243.x.pd

    Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    Get PDF
    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs

    Air–sea exchange of acetone, acetaldehyde, DMS and isoprene at a UK coastal site

    Get PDF
    Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and are important for atmospheric chemistry. Large uncertainties remain in the role of the ocean in the atmospheric VOC budget because of poorly constrained marine sources and sinks. There are very few direct measurements of air–sea VOC fluxes near the coast, where natural marine emissions could influence coastal air quality (i.e. ozone, aerosols) and terrestrial gaseous emissions could be taken up by the coastal seas. To address this, we present air–sea flux measurements of acetone, acetaldehyde and dimethylsulfide (DMS) at the coastal Penlee Point Atmospheric Observatory (PPAO) in the south-west UK during the spring (April–May 2018). Fluxes of these gases were measured simultaneously by eddy covariance (EC) using a proton-transfer-reaction quadrupole mass spectrometer. Comparisons are made between two wind sectors representative of different air–water exchange regimes: the open-water sector facing the North Atlantic Ocean and the terrestrially influenced Plymouth Sound fed by two estuaries. Mean EC (± 1 standard error) fluxes of acetone, acetaldehyde and DMS from the open-water wind sector were −8.0 ± 0.8, −1.6 ± 1.4 and 4.7 ± 0.6 µmol m−2 d−1 respectively (“−” sign indicates net air-to-sea deposition). These measurements are generally comparable (same order of magnitude) to previous measurements in the eastern North Atlantic Ocean at the same latitude. In comparison, the Plymouth Sound wind sector showed respective fluxes of −12.9 ± 1.4, −4.5 ± 1.7 and 1.8 ± 0.8 µmol m−2 d−1. The greater deposition fluxes of acetone and acetaldehyde within the Plymouth Sound were likely to a large degree driven by higher atmospheric concentrations from the terrestrial wind sector. The reduced DMS emission from the Plymouth Sound was caused by a combination of lower wind speed and likely lower dissolved concentrations as a result of the estuarine influence (i.e. dilution). In addition, we measured the near-surface seawater concentrations of acetone, acetaldehyde, DMS and isoprene from a marine station 6 km offshore. Comparisons are made between EC fluxes from the open-water and bulk air–sea VOC fluxes calculated using air and water concentrations with a two-layer (TL) model of gas transfer. The calculated TL fluxes agree with the EC measurements with respect to the directions and magnitudes of fluxes, implying that any recently proposed surface emissions of acetone and acetaldehyde would be within the propagated uncertainty of 2.6 µmol m−2 d−1. The computed transfer velocities of DMS, acetone and acetaldehyde from the EC fluxes and air and water concentrations are largely consistent with previous transfer velocity estimates from the open ocean. This suggests that wind, rather than bottom-driven turbulence and current velocity, is the main driver for gas exchange within the open-water sector at PPAO (depth of ∼ 20 m)

    Tactical urbanism as a means of testing relational processes in space: A complex systems perspective

    Get PDF
    Too often, master planning strategies have failed to produce spaces responding to the social, cultural, and economic needs of their inhabitants. Accordingly, many planners have turned to relational strategies to redefine their practices. These tend toward methodologies that explore relational forces preceding design interventions rather than unfolding by means of design interventions. This article considers an alternative mode of understanding relational processes: one that considers tactical urban strategies theorized through the lens of complexity theory. This article argues that tactical approaches harness relational junctures in situ, effectively exploring relational configurations of cohesive urban environments. A design competition entry provides an illustrative example of this approach: one that channels and choreographs relational urban processes
    corecore