47,684 research outputs found

    A visual workspace for constructing hybrid MDS algorithms and coordinating multiple views

    Get PDF
    Data can be distinguished according to volume, variable types and distribution, and each of these characteristics imposes constraints upon the choice of applicable algorithms for their visualisation. This has led to an abundance of often disparate algorithmic techniques. Previous work has shown that a hybrid algorithmic approach can be successful in addressing the impact of data volume on the feasibility of multidimensional scaling (MDS). This paper presents a system and framework in which a user can easily explore algorithms as well as their hybrid conjunctions and the data flowing through them. Visual programming and a novel algorithmic architecture let the user semi-automatically define data flows and the co-ordination of multiple views of algorithmic and visualisation components. We propose that our approach has two main benefits: significant improvements in run times of MDS algorithms can be achieved, and intermediate views of the data and the visualisation program structure can provide greater insight and control over the visualisation process

    A virtual workspace for hybrid multidimensional scaling algorithms

    Get PDF
    In visualising multidimensional data, it is well known that different types of algorithms to process them. Data sets might be distinguished according to volume, variable types and distribution, and each of these characteristics imposes constraints upon the choice of applicable algorithms for their visualization. Previous work has shown that a hybrid algorithmic approach can be successful in addressing the impact of data volume on the feasibility of multidimensional scaling (MDS). This suggests that hybrid combinations of appropriate algorithms might also successfully address other characteristics of data. This paper presents a system and framework in which a user can easily explore hybrid algorithms and the data flowing through them. Visual programming and a novel algorithmic architecture let the user semi-automatically define data flows and the co-ordination of multiple views

    Strong Unification

    Full text link
    We investigate the possibility that unification occurs at strong coupling. We show that, despite the fact the couplings pass through a strong coupling regime, accurate predictions for their low energy values are possible because the couplings of the theory flow to infrared fixed points. We determine the low-energy QCD coupling in a favoured class of strong coupling models and find it is reduced from the weak coupling predictions, lying close to the experimentally measured value. We extend the analysis to the determination of quark and lepton masses and show that (even without Grand Unification) the infra-red fixed point structure may lead to good predictions for the top mass, the bottom to tau mass ratio and tanβ\tan \beta . Finally we discuss the implications for the unification scale finding it to be increased from the MSSM value and closer to the heterotic string prediction.Comment: 12 pages, LateX, no figure

    A hybrid layout algorithm for sub-quadratic multidimensional scaling

    Get PDF
    Many clustering and layout techniques have been used for structuring and visualising complex data. This paper is inspired by a number of such contemporary techniques and presents a novel hybrid approach based upon stochastic sampling, interpolation and spring models. We use Chalmers' 1996 O(N/sup 2/) spring model as a benchmark when evaluating our technique, comparing layout quality and run times using data sets of synthetic and real data. Our algorithm runs in O(N/spl radic/N) and executes significantly faster than Chalmers' 1996 algorithm, whilst producing superior layouts. In reducing complexity and run time, we allow the visualisation of data sets of previously infeasible size. Our results indicate that our method is a solid foundation for interactive and visual exploration of data

    Coordinating views for data visualisation and algorithmic profiling

    Get PDF
    A number of researchers have designed visualisation systems that consist of multiple components, through which data and interaction commands flow. Such multistage (hybrid) models can be used to reduce algorithmic complexity, and to open up intermediate stages of algorithms for inspection and steering. In this paper, we present work on aiding the developer and the user of such algorithms through the application of interactive visualisation techniques. We present a set of tools designed to profile the performance of other visualisation components, and provide further functionality for the exploration of high dimensional data sets. Case studies are provided, illustrating the application of the profiling modules to a number of data sets. Through this work we are exploring ways in which techniques traditionally used to prepare for visualisation runs, and to retrospectively analyse them, can find new uses within the context of a multi-component visualisation system

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. This volume of the series of final reports documenting the FSA Project deals with the Project's activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety and reliability requirements of large-scale terrestrial photovoltaic systems applications. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis to define design shortfalls and, thus, areas requiring additional research and development. During the life of the FSA Project, these activities were known by and included a variety of evolving organizational titles: Design and Test, Large-Scale Procurements, Engineering, Engineering Sciences, Operations, Module Performance and Failure Analysis, and at the end of the Project, Reliability and Engineering Sciences. This volume provides both a summary of the approach and technical outcome of these activities and provides a complete Bibliography (Appendix A) of the published documentation covering the detailed accomplishments and technologies developed

    Interconnect fatigue design for terrestrial photovoltaic modules

    Get PDF
    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field

    Borel singularities at small x

    Get PDF
    D.I.S. at small Bjorken xx is considered within the dipole cascade formalism. The running coupling in impact parameter space is introduced in order to parametrize effects that arise from emission of large size dipoles. This results in a new evolution equation for the dipole cascade. Strong coupling effects are analyzed after transforming the evolution equation in Borel (bb) space. The Borel singularities of the solution are discussed first for the universal part of the dipole cascade and then for the specific process of D.I.S. at small xx. In the latter case the leading infrared renormalon is at b=1/β0b=1/\beta_0 indicating the presence of 1/Q21/Q^2 power corrections for the small-xx structure functions.Comment: 5 pages, Latex (Talk presented at DIS'97, Chicago, IL

    Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    Get PDF
    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed
    corecore