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Abstract

A number of researchers have designed
visualisation systems that consist of multiple
components, through which data and interaction
commands flow. Such multistage (hybrid) models can
be used to reduce algorithmic complexity, and to open
up intermediate stages of algorithms for inspection and
steering. In this paper we present work on aiding the
developer and the user of such algorithms through the
application of interactive visualisation techniques. We
present a set of tools designed to profile the
performance of other visualisation components, and
provide further functionality for the exploration of high
dimensional data sets. Case studies are provided,
illustrating the application of the profiling modules to a
number of data sets. Through this work we are
exploring ways in which techniques traditionally used
to prepare for visualisation runs, and to retrospectively
analyse them, can find new uses within the context of a
multi–component visualisation system.

1. Introduction

The challenge of gaining insight into the
information contained within a set of multidimensional
data entails finding a representation of the data that
conveys inherent patterns and latent structure. A
dimension reduction approach to this problem seeks to
represent multidimensional data in a low dimensional
space, such that inter-object distances are preserved as
well as possible. There have been many layout
algorithms proposed for effectively reducing data
dimensionality [1, 2, 3, 4], each with different benefits
and drawbacks. For example, some techniques may be
too time-consuming to be able to process any sizable
data set, whereas others may not be flexible enough to
reveal complex and diverse relationships within the
data. A combinatorial or ‘hybrid’ approach to building
dimension reduction solutions has been shown to
provide good results in terms of efficiency and the
uncovering of patterns contained within complex data
[5].

A software system called HIVE (Hybrid
Information Visualisation Environment) [6] has been
developed that provides a framework to encapsulate
this approach. The benefits of hybrid layout algorithms
are twofold; as well as providing fast, effective
solutions, the approach also naturally provides multiple
views of a data set as it is transformed in the various
algorithmic stages.
HIVE provides an extensible palette of algorithmic

components that can either be used individually or
integrated into hybrid algorithmic models. The system
is intended as an environment in which to design such
hybrid models. As such, this paper introduces a new
suite of tools that permit the evaluation of these models
within the HIVE system, as well as offering further
functionality for the exploration of high dimensional
data sets.
Due to the flexibility of the visual programming

approach, these tools can be connected to various stages
of a hybrid algorithm whilst it is running, using visual
metaphors consistent with the rest of the HIVE
framework. As such, they themselves become
visualisations. By coordinating the views provided by
these tools with the views of the data, we can not only
interactively explore our data but also the relationship
between the layout and the performance of the
transformation process as it runs.
In the following section, more background

information is provided on the HIVE framework and
hybrid algorithms in general. Following that, the new
profiling modules are described and then three case
studies are presented that illustrate their benefit.
Finally, a section of future work precedes the
presentation of our conclusions.

2. Background and previous work

This section provides a more detailed overview of
the HIVE system, after a general introduction to hybrid
layout algorithms and the multiple views that such an
approach provides.
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2.1 Hybrid algorithms and coordinated views

Several approaches exist for tackling dimensional
reduction, each with different benefits and drawbacks.
While linear projection approaches such as PCA can be
fast to compute, they can only reflect patterns in the
data that can be explained by a linear function of the
dimensions, and thus do not reveal non-linear
relationships. Conversely, methods such as force-
directed placement (FDP) [3, 7] create layouts through
the modelling of physical forces based upon inter-
object relationships. Such algorithms can be used to
reveal such non-linear relationships, but until recently
exhibited high time complexity.
It has been shown that the adoption of a hybrid (or

multi-stage) approach to the creation of layout
algorithms can help to reduce time complexity and aid
data exploration [5, 8, 9, 10]. Based upon trade-offs
between individual algorithms such as those described
above, individual models may be combined or tailored
in such a way as to maximise the benefits of each,
whilst limiting any shortcomings. For example,
Morrison and Chalmers [10] present an algorithm that
applies force-directed placement to a random sample of
the data, and then uses the resultant layout as a base on
which to interpolate the rest of the set. In doing so, the
computationally intensive process is applied to only a
small subset, but we maximise the benefits gained from
the accurate positioning of this subset in placing the
remaining objects.
Another benefit of this hybrid approach is the

provision of intermediate views of the data. Hybrid
algorithms can be implemented as a flow of data
through a series of computational components. As
such, the output of each intermediate stage may be
visualised to provide further insight into the data under
investigation. Brodbeck and Girardin [9] propose a two-
phase algorithm where a self organising map (SOM) [4]
– an artificial neural network, usually visualised as a
discrete grid of glyphs that visually encode the neural
weights – is used to create a topological layout of data,
and also used as the input for force-directed placement.
In this case, the SOM can provide a discretised
overview of the data while the FDP output provides a
view where local detail is better defined.
The hybrid algorithmic approach can potentially

result in multiple views of the data as it is transformed,
and therefore would benefit from some form of view
coordination. North et al. [11] categorise view
coordination according to whether it is data-centric or
representation-centric, and North [12] has developed a
taxonomy based upon these. The representation-centric
approach uses the visual representations of the data for
achieving coordination. An example of this is
navigational slaving, where rotation and panning are
synchronised across views of the data. Data-centric

techniques, on the other hand, coordinate interaction
across views according to the underlying data. A well-
known data-centric technique introduced by Becker and
Cleveland [13] is brushing and linking. Becker and
Cleveland demonstrated this using a matrix of
interlinked scatterplots where each plot represents a
different view of the same data. When the user selects a
group of points in one plot, the other plots are updated
to highlight the corresponding points.
In North and Shneiderman’s snap-together system

[14], it is shown that users can direct coordinations
between different views of data, thereby gaining more
information. Boukhelifa and Rodgers [15] describe a
model for view coordination, in which subsets of
interactive components can be connected to support
brushing and linking, and data flow specifications can
be used to control the running of components, e.g. an
FDP component triggering ‘downstream’ components
only when it has stabilised. If users and designers of
hybrid layout algorithms can supplement their views
with such coordination functionality, the effects of
individual algorithmic stages can be gauged and the
data explored within different transformation contexts.
An example of this was provided by Ross and Chalmers
[6], where significant local detail within a data set was
visible only in a view created by an intermediate step of
the layout process. In this case, the intermediate view
was also coordinated with a histogram and fisheye table
view to gain more insight.

2.2 The HIVE framework

Visual programming can be described as the
adoption of a 2D graphical notation for the creation of
programs, as opposed to the conventional 1D textual
approach [17]. The implementation of visual
programming systems is often based on the data-flow
model where functional components are directly
manipulated by the user to create a block diagram
representing the processes through which data flow.
This provides an intuitive and flexible basis for the
creation of customised computing applications without
the need for any ‘real’ programming expertise.
HIVE [6] is a data-flow visual programming

system developed to examine and create clustering and
layout algorithms, as well as to explore the data that
they transform. HIVE was inspired by systems such as
Upson et al’s AVS [16], which utilises the data-flow
model and visual programming to interactively create
scientific visualisation applications, and North and
Shneiderman’s snap-together software [14], where the
user can define view coordination for interaction flow.
The HIVE system uses direct manipulation to

allow users to interactively create and explore hybrid
layout algorithms. Visual programming and a novel
algorithmic architecture allow users to semi–
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automatically coordinate multiple views and
interactively steer data flows. The architecture has been
designed so that users can compose exploratory data
analysis tools using modular components for importing
data, algorithmic processing and graphical rendering.
Figure 1 shows an example of HIVE’s workspace1

where a simple data-flow network was built manually
by dragging the appropriate component modules from a
GUI tool bar. Each module has several ports, and by
dragging connections between these, the components
may be ‘wired’ together. Labelled ports are made
visible in HIVE’s ‘link’ mode.

Figure 1. A simple example of a data flow
network in HIVE. Synthetic input data is
processed by a force-directed placement (FDP)
routine while being viewed in a fisheye table.
The output of the FDP is fed into a 2D
scatterplot. The two visualisation components
are coordinated, so that selecting objects in
one view will highlight the corresponding
objects in the other.

The data set used in the figure is in the form of a
file containing 300 two-dimensional coordinates
representing a ‘C’ shape (a square missing one side).
The data module is connected to an FDP module and a
fisheye table, which uses distortion to provide focus
and context information in a similar way to Table Lens
[18]. Note that the data is fed into the FDP and table
modules simultaneously. In the figure, the FDP process
has completed, although it may be noted that during the
iterative process, the scatterplot of the 2D layout
coordinates was updated every ten iterations. The
scatterplot therefore displays an animation of the layout
process, allowing the user to watch the layout form.

1 Throughout the paper, certain details have been omitted from
screenshots to aid clarity.

The link that is highlighted in red (link between table
and scatter plot) is a coordination link. This means that
by selecting rows on the table or points in the scatter
plot, the corresponding items are highlighted in the
other view. This location probing is an example of the
flow of interaction possible within the system.
HIVE has a novel hybrid algorithmic framework,

offering a general approach to the composition of
efficient and flexible hybrid algorithms. The choice of
each algorithmic component is influenced by many
characteristics including the cardinality, dimensionality
and distribution of the data, computational cost and the
interaction components that might be used within a
larger workspace. These choices can be made
incrementally, so that users may employ intermediate
representations as they work with and explore the data.
HIVE can also assist the user by using a pre-

authored classification of data—based on cardinality
and dimensionality of data sets—and a corresponding
classification of available algorithmic components
based on the classes of input data set for which each
component is suited, and the class of data set it outputs.
This means that if a data file is loaded, and a
visualisation component selected, the system will use
its ‘cookbook’ of algorithms to set up a number of
components to take the data file’s contents and create
data suitable for visualisation. For example, reading in a
large high–dimensional data set and choosing an
appropriate dimensional reduction algorithm to create
2D data suitable for a scatterplot.
While the system provides flexibility in the

creation of layout algorithms and data exploration, there
is also a requirement to be able to assess the quality of
the layouts produced. In some instances, a new layout
algorithm might produce a view of a data set in which
there is no discernable structure. However, this may or
may not be representative of the data and therefore we
require some means of determining how well inter-
object distances in the layout are preserved. In Buja et
al’s XGvis software [19], the user is able to experiment
with different hard-coded MDS algorithms. The
software allows the user to change the algorithmic
parameters such as the dimensionality of the output
space, and to quantitatively measure the effects of such
changes on the quality of the representation. Similar
techniques for algorithmic steering and profiling have
been incorporated and given a more interactive role
within HIVE, as discussed in the following sections.

3. Profiling modules

HIVE has been demonstrated to be an effective
environment within which to explore high dimensional
data sets. A palette of algorithmic components and
visualisation tools provides the user with several
disparate views of a data set and allows a number of
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different aspects to be explored. Further insight is
supported via brushing between these views. The
framework is also suitable as an environment for the
design of novel hybrid algorithms. Novel combinations
of implemented modules may be experimented with,
and the extensible nature of the algorithmic palette
permits the simple addition of new components.
In addition to this, we propose that HIVE is a

useful tool for the profiling and evaluation of hybrid
algorithms. A number of HIVE modules have been
implemented to measure and display performance
characteristics of other HIVE components. The
inclusion of such profiling modules permits algorithm
evaluation to be tightly and interactively coupled with
the algorithms being run. The same visual metaphors
may be used in linking together profiling components,
and the decision as to which properties to measure can
be made and altered at run-time. Profiling tools may
also be linked to existing visual modules, with their
coordinated use providing insight into data sets that
would go unnoticed in a sole visualisation. Examples
of such coordination are provided in Section 4.
In this section, we introduce the profiling modules

implemented in HIVE.

3.1. Multiple runs module

In evaluating hybrid algorithms, ‘batch-runs’ of
algorithmic executions need to be performed.
Fundamental to such a system of algorithmic profiling
is a controller to coordinate the execution of each test
run. The Multiple Runs (MR) module fulfils this role.
As all modules in HIVE, the MR module interacts with
other components via a series of signals sent through
connected ports. MR has three output ports: a ‘data
out’ port through which to pass the input data to
algorithmic components, a start trigger to activate the
first module, and an optional parameter port to provide
a mechanism for customising the conditions under
which each test should be run. For example, it is
possible to customise the use of an FDP component on
each run by supplying values for the number of
iterations to perform, the level of damping to apply to
the model, and the values for other constants used
within the algorithm. It is necessary to specify
algorithmic conditions in such a manner, rather than via
interactive controls on each component, so that a
number of different conditions can be experimented
with during a batch job.
Such parameters are specified, along with

information on number of runs and which datasets to
use, in a text entry field within the module. Series of
commands are entered in the form:

(DataFile,[NumRuns,<ModuleID,(parameters)>,<>..])

This input is parsed by the MR module, stripping
out parameter information and passing it to the modules
in the form of a series of (moduleID,(parameters))
tuples. Each module receives the entire parameter list,
and must search it for the appropriate entry. On the
termination of an algorithm, the final module sends a
signal to the MR’s input port, and the MR begins the
next run.

3.2. Clock

Run-time is an important criterion in the evaluation
of a layout algorithm. Regardless of the effectiveness
of a particular technique, excessively high run times
may render its use infeasible, or place a limit on the size
of data set which can be laid out within a time suitable
for interactive use. It is obviously also useful to be able
to compare algorithms’ run times against those of
competitor techniques.

Figure 2. Clock modules connected to each
stage of a hybrid algorithm. HIVE’s
extensibility allows multiple instances of
profiling modules to be connected at run-time.
In this screenshot, HIVE is in ‘link’ mode,
meaning that labelled ports are displayed while
other controls are temporarily hidden.

To this end, a clock module has been defined with
which a developer may easily measure the run times of
one or more algorithmic components. Figure 2
illustrates how the clock may be used to measure the
time taken for individual stages of a hybrid model. One
clock module is connected to the first stage, and another
to the second. In the HIVE environment, it is simple to
use the clock to time a complete algorithm, by
connecting the first algorithmic component to the start
trigger and the final module to the stop trigger.
On completion, the run time is displayed on the

clock module and also written to a file, the name of
which may be specified within a text entry box.
Multiple algorithmic runs may therefore be executed,
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with each clock appending to a separate results file each
time.

3.3. Stress

In evaluating a layout algorithm, as well as
examining run times, it is of obvious importance to
consider the quality of layouts produced. Several
metrics exist for the assessment of layout quality [20,
21, 22], often based on the layout’s stress: the
discrepancy between layout distances and high
dimensional relationships. The stress-1 metric [20], for
example, is defined as in the equation below, where h
represents high-dimensional distance and l low-
dimensional (layout) distance:
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A stress module has been defined to perform such
evaluations. Taking from input ports a high
dimensional data set and a set of low-dimensional
positions, the above stress calculation may be
performed. We choose to receive data in this form,
rather than sets of inter-object distances for issues of
space efficiency. The high and low-dimensional
distances are calculated on the fly within the stress
module. In common with the clock module, a trigger
port can be used to commence stress calculation. A
button is also supplied to give the instruction to
calculate the stress immediately. Although redundant
in batch-job execution, such functionality is important
to interactive exploratory analysis of data.
Calculation of stress is a computationally intensive

undertaking, often a more time-consuming process than
the algorithm itself. Although useful in assessing
layout quality, it may not be integral to the algorithmic
process. The time spent on stress calculations should
not, therefore, contribute to run time measurements. As
such, a ‘pause’ output port is supplied on the stress
module. Any clock to which this port is connected will
be instructed to stop timing for the duration of stress
calculations, and the time spent on them will not
contribute to the measured run times.
Like the clock module, the stress component has a

text field to allow users to specify an output file to
which results should be written. Controls are also
provided to allow selection between several
implemented stress algorithms.

3.4. Shepard diagram

The Shepard diagram [2] is another tool that may
be used to determine the quality of an MDS solution. At
its most basic, it is a plot of the low dimensional (or
layout) distance between each pair of objects in the data
set against the corresponding high dimensional (or
input) distance for that pair. Should an MDS solution
provide a good representation of relationships within
the high dimensional space, the points in the Shepard
diagram will have a strong positive correlation with low
deviation from the 45 degree diagonal. Figure 3
illustrates a Shepard diagram, where high dimensional
distances are plotted on the y-axis and layout distances
along the x-axis. Points that lie above the diagonal
represent data elements that are too close together in the
generated layout, while points that lie below the
diagonal represent those that have been positioned too
far apart. It is clear that points distant from the diagonal
in such a plot would represent pairs of objects that
make a large contribution to layout stress.
As with obtaining the stress of a layout, acquiring a

full Shepard diagram necessitates the calculation of the
distances between all pairs of elements of the data set,
and this can be very time consuming. To overcome this,
like the stress module, the Shepard diagram module
allows the user to specify the size of a random sample
of objects with which to produce the plot, of default
sample size �N. Brush and link functionality is also
provided so that location probing in the Shepard
diagram can highlight the corresponding data items
represented in other views.

Figure 3. The Shepard diagram module. Each
point represents distances between a pair of
objects: high dimensional distances (y-axis)
are plotted against low dimensional layout
distances.

Stress =
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The Shepard diagram has a long tradition of use in
MDS as a tool for the appraisal of layout quality.
Historically, MDS was performed by psychologists and
psychophysicists [22], taking as input experimental
subjects’ judgements of similarity between a set of
stimuli. As such, data sets tended to be small: at most a
few hundred objects. The Shepard diagram could
therefore comfortably cope with the ½N(N-1) distances
between N objects. In more recent times, such
techniques have been used for exploratory data analysis
of much larger data sets. It is not uncommon for a user
to explore a set of 100,000 objects or more. As such,
the Shepard diagram became a less useful tool, due to
the density of points required for such sets.
In an environment such as HIVE, however, the

provision of interactive tools allows us to find new uses
for such traditional tools. Zoom and pan controls, in
conjunction with sampling, can help alleviate the
usability problems encountered by overly dense plots.
Additionally, the interactive coordination of several
plots or views of data can promote understanding into
data that would not be possible with the solo
techniques.

3.5. Chart

A general line chart tool has also been added to the
HIVE environment, and is illustrated in Figure 4.
Dependent and independent variables may be specified
via separate ports, with a line chart drawn dynamically
as values are received. Multiple data series may be
accommodated, with each measurement being assigned
to a series via parameters or interactively.
Although simple, such a tool has many practical

applications. For example, algorithmic characteristics
such as run time or stress can be graphed, allowing
comparisons to be made between various models or
algorithm stages. The chart can also be used
dynamically during algorithm execution, for example to
view the stress of a layout over time. Such usage has
been illustrated in Figure 4. The chart’s y-axis
represents layout stress, while the x-axis counts the
number of iterations performed. Such a graph could be
used in detecting situations where an iterative model
has become stuck in a local minimum. Functionality is
also provided to support the simple export of the chart
as an image file.

Figure 4. The Chart component being used in
conjunction with an FDP routine to display
stress per iteration. Note that stress initially
grows as energy is put into the system, before
dropping as the layout progressively
improves. The scatterplot visualisation shows
the layout after 158 iterations. Using the two
views in parallel, a user can determine whether
the layout is complete, or further processing is
required.

3.6. Coordination of profiling modules in HIVE

The previous sections have described isolated
instances of HIVE’s new profiling modules. The real
power of such techniques, however, comes in their
combination and interaction with existing components
within the HIVE environment. Histograms, fisheye
tables and scatterplots all have interactive functionality,
allowing coordination with the profiling components.
For example, the Shepard diagram is traditionally a

static presentation technique for qualitatively evaluating
the quality of a low-dimensional representation of high-
dimensional data. By incorporating it into the HIVE
framework, the plot can have as many instantiations as
necessary, with each instance connected to a different
part of the visualisation’s data flow. By connecting a
Shepard diagram to a scatterplot, we create an
interactive link between the two plots. Making a
selection in the Shepard diagram will therefore
highlight those objects in the scatterplot layout whose
pairwise distances correspond to the selected points.
For example, in Figure 5, we use Shepard diagrams to
compare layouts obtained from PCA and FDP. It is
apparent that the Shepard diagram of the PCA layout
has a distinct diagonal edge, below which no points are
plotted. This may be explained by the fact that PCA
functions via a projection of the high dimensional space
onto a 2D plane. In contrast, FDP has no linear
constraints and attempts to position objects to best
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preserve high-dimensional relationships. This results in
a Shepard diagram where there are points both above
and below the diagonal, as well as the points that
represent items ideally placed in the plane.

Figure 5. The top two images show 2D layouts
of the Antarctica data (described in section
4.2.2) using linear PCA (left) and nonlinear FDP
(right). Below each layout is the associated
Shepard diagram. The PCA layout has no pair
of objects at a greater distance from each
other than in high-dimensional space. This is
confirmed by the fact that no objects appear
below the diagonal in the PCA’s Shepard
diagram.

Another implemented component that may be used
in interactive combination with the profiling modules is
a module for Voronoi tessellation. This module may be
used to partition a completed layout [23]. Each point is
contained by a convex polygon so that the portion of
space contained within the polygon is closer to that
point than any other. Clustering may then be performed
by finding contiguous groups of polygons where the
density of points is similar. The module may be used in
combination with profiling modules to detect clusters
that may benefit from closer examination.
In the following section, we provide more concrete

examples of the coordination of components with a
series of case studies.

4. Case studies

This section details several case studies, illustrating
the coordinated use of existing components with the
novel profiling modules within the HIVE environment.

4.1. Batch job of executions for algorithm
evaluation

The first case we will examine is the thorough
evaluation of a novel algorithm. Through the use of
the profiling modules described in the previous section,
such evaluation may be performed simply and in an
intuitive manner. The following describes the
evaluation process undertaken in the writing of a paper
that presents a novel hybrid layout algorithm [10].
In performing such algorithmic profiling, a large

number of executions are necessary. Several models
may be evaluated on several different data sets of
several different sizes. In addition, results should be
averaged over numerous runs: an especially important
consideration in the case of iterative models, which can
occasionally become stuck in local minima. With
several hundred executions necessary for a thorough
evaluation, then, it is clear that an automated profiling
process is a useful aid to the designer. Figure 6
illustrates the configuration of components required for
such an evaluation. To avoid describing the specific
model in depth, details such as the names of individual
components have been omitted from the figure.
Having built a hybrid algorithm (composed of the

modules shaded in yellow in Figure 6), we wish to
examine its performance in comparison with an
alternative technique. Profiling modules (grey) may be
added to the module configuration at the user’s
discretion. Here, we have elected to measure the run
time of two stages. We also measure stress at the
conclusion of stage 4. By specifying file names on
each of these components, separate output files are
generated by each, allowing the detail of performance
characteristics to be explored further in other
applications.
The MR module (top left) is provided with a list of

data files and parameter commands. It systematically
loads in each file, and passes the instructions for the
current execution to each algorithm component. The
MR module passes a start trigger into stage 1, and
receives another from the final stage to indicate that the
algorithm has terminated: the cue to reset all modules
and begin another run.
Finally, charts at the bottom of the figure display

experimental results. A test data collection has been
sampled to create data sets of varying size. The charts
graph run times against data set sizes under different
algorithmic conditions, with each line on the chart
representing a different condition. Each chart is
connected to a different clock module, and therefore
displays times taken by different algorithmic
components.
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Figure 6. The yellow modules represent
different stages of a hybrid algorithm. The
Multiple Runs module coordinates a sequence
of executions, loading data and parameters
into each component. Charts plot run time
against data set size at various stages of the
algorithm. The bottom left chart shows run
times under three separate sets of parameters
for stage 3. Having connected the various
components and provided instructions to the
MR module, the algorithm executions and
chart plotting may proceed unsupervised.

For example, the chart at the left hand side displays
the run times required by the third stage of the model.
Three separate approaches were experimented with for
this stage (as specified by the experimenter in the MR
module and passed to stage 3 via parameters), as
indicated by the three lines on the chart. We can
deduce that on small data sets, condition 1 executed the
fastest, whereas condition 2 becomes optimal as data
size increases.
Charts of this type formed the basis of the paper’s

results section [10]. What could have been a laborious
evaluation procedure was undertaken via a simple,
unsupervised process. The algorithms could be left to
run overnight, with the generated charts being exported
in graphics format as they were created.
At present, the main benefits of such a case is the

ability to design algorithms, run profiling techniques
and chart results in the same environment. Work on the
system is ongoing, however, and it is the intention to
provide coordination between the chart and scatterplot
components. For example, the chart in Figure 4 plots
stress over iterations. It might be of benefit to allow the
user to select a specific iteration from the x-axis, and be
shown in the scatterplot how the layout appeared at that
instant.

4.2. Exploratory analysis

This section demonstrates via two examples how
the profiling modules may be used interactively to
further understanding of a data set.

4.2.1. Synthetic data. In this example, we illustrate
the interactive combination of the Shepard diagram
with other HIVE visualisations. As previously
mentioned, brush-and-link coordination has been
incorporated in the Shepard diagram to allow
interaction with other components. For example,
linking the Shepard diagram and scatterplot views
allows insight into the relationships between quality of
positioning and objects’ placement within the layout.
To illustrate the usefulness of this interactive

capability, we provide an example using a synthetic
data set representing a 3D cube. Such a data set is a
useful test case, as it is impossible to represent perfectly
in a 2D space, and no 2D projection of the data is much
better or worse than any other. To begin, we use PCA
to obtain a scatterplot layout (Figure 7a). Linear
projection-based layout techniques such as PCA,
although fast, provide a layout based upon global data
properties. It is therefore the case that certain local
areas might be poorly represented. This example
illustrates how interactive use of the Shepard diagram
component can help a user to resolve inaccuracies in
these areas, and thereby enhance understanding of the
structure of the data.
The cube structure is clearly visible from Figure

7a, coloured dark to light from top to bottom. In Figure
7b, we show a Shepard diagram of the layout generated
by PCA. Each point in the Shepard diagram represents
a distance between a pair of objects. In Figure 7b, we
have highlighted a section of points in the upper left of
the layout: those points corresponding to the
relationships worst represented in the PCA layout.
Figure 7c shows the how this selection affects the
scatterplot display. The linking between views informs
us that the objects worst represented in the layout
appear in the centre. These objects represent points at
opposite corners of the cube, forced together in the
projected layout.
Having identified such a poorly represented area of

the layout, it may be desirable to extract the subset of
objects in that region and lay them out separately. In
doing so, we remove the influence of the full data set,
and examine only relationships between the objects in
that subset. The selected region was therefore fed into
another PCA module and re-projected, yielding the
layout shown in Figure 7d. It can be seen that the inter-
object distances are now more accurate; the two corners
of the cube have been separated. As a quantitative
measure of the quality of the layouts, the stress of the
full layout was measured and compared to that of the
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sub-layout. As expected the stress of the sub-layout was
much less than that of the global layout: 0.001
compared to 0.149.

Figure 7. PCA layout and Shepard diagram
working together interactively to help build
user understanding of a data set. (a) The PCA
layout. (b) A Shepard diagram of the layout. A
selection is made of points corresponding to
distances in the layout that may benefit from
further analysis (highlighted region). (c) The
selection in the Shepard diagram is also
highlighted in the PCA layout. (d) A re-
projection of the selected points and their
immediate region confirms their
misrepresentation in the original layout.

4.2.2. Antarctic data set. The above scenario
demonstrated, via a simple example on synthetic data,
how a profiling component could be used interactively
in combination with other views to encourage further
exploration of a data set. We now provide a similar
example to illustrate the usefulness of such techniques
in a real-world setting. The data used here were
gathered with a remote sensor probe during an
investigation into carbon cycling in Antarctic lakes.
They represent a number of properties measured over
time, such as water temperature and the level of
photosynthetically active radiation.
The data set was initially fed into a PCA module,

with the Shepard diagram used to identify a local region
of items that were potentially badly placed. In a
manner similar to the previous example, points far

away from the diagonal trend were selected in the
Shepard diagram, which resulted in the contributing
items being highlighted in the connected PCA layout.
The leftmost two components of Figure 8 illustrate the
scatterplot and Shepard diagram following this
selection.
Having identified these poorly represented objects,

we may observe that they appear to be localised to a
specific region in the top-right of the layout. We may
hypothesise that this area could represent a distinct
cluster within the data, which has not been made
apparent by the PCA layout. A Voronoi component
may be employed to gain a clearer understanding of the
partitions within the data. The output from PCA is fed
into a Voronoi component, which identifies five
separate clusters in the layout.
The Voronoi component is illustrated in the centre

of Figure 8. Five clusters were found, and shown in
different colours. Outlying objects not identified as
belonging to a specific cluster were coloured grey. It
may be seen that the objects highlighted in the PCA
layout all belong to the yellow cluster. We select this
subset and overlay the Voronoi tessellation.
Having now identified a cluster of the data within

which certain distances are poorly represented, we may
extract it and apply further processing to determine why
this is so. Through connecting to the Voronoi output
port, another component may take as input the selected
cluster. The figure illustrates how we pass the cluster
to an FDP routine. This nonlinear technique is able to
discover further detail that PCA could not identify: two
clear sub-clusters are found within the selected data.
The PCA layout had clearly failed to adequately

separate these two sub-clusters, which explains the
large discrepancy between high and low dimensional
distances observed from the Shepard diagram. The
measures derived from the stress component confirm
the findings, with the PCA layout giving 0.031 and the
FDP layout of the extracted cluster giving 0.025.
Having discovered the presence of two sub-

clusters, we may be interested in seeing how they were
depicted in the original PCA layout. Comparing the
FDP layout and the Voronoi display, it may seem as if
the smaller of the two sub-clusters appears on the left of
the yellow Voronoi region, with the larger C-shaped
sub-cluster appearing on the right. Had the two images
been produced independently, one may have made this
assumption. HIVE’s interactive, coordinated view
framework, however, allows users to compare the
location of the same objects in different layouts. Figure
9 shows the selected C-shaped sub-cluster in the FDP
layout and the resultant highlighting of the
corresponding objects in the PCA layout. It may be
seen that the division between the two sub-clusters
actually occurs in the top-right corner of the PCA
layout.

Proceedings of the Second International Conference on Coordinated & Multiple Views in Exploratory Visualization (CMV’04) 

0-7695-2179-7/04 $20.00 © 2004 IEEE



Figure 8. Various algorithmic and visualisation components working together in a coordinated
environment. A PCA layout is made, and the associated Shepard diagram used to detect a local
area that might be better represented if considered separately. A Voronoi tessellation component
is used to cluster the data, and extract the cluster containing the previously identified local area
(the yellow objects in the central component). This cluster is processed with an FDP routine,
which uncovers two sub-clusters that we had not previously been able to identify.

Figure 9. The left image shows the FDP layout
of a selected Voronoi cluster within a PCA
layout. On the right is the original PCA layout.
Selecting the C-shaped sub-cluster on the left
highlights the corresponding objects in the
PCA layout, helping us to understand the
overlap or separation of sub-clusters in the
PCA.

Figure 10. Shepard diagrams based upon the
PCA layout of the full data set (left) and the
FDP layout of the selected cluster. Red lines
are drawn at 45 degrees to help detect the
extent to which points deviate from this
diagonal.
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The final stage of processing undertaken in Figure
8 is the creation of the Shepard diagram of the FDP
layout, shown in the top right corner. In tandem with
the stress calculations, this allows a visual comparison
of the degree to which the PCA and FDP layouts
preserved high-dimensional relationships.
The Shepard diagram resulting from the PCA

layout exhibits a ‘cleaner’ line on the 45 degree
diagonal, as we would expect from the discussion in
section 3.6. It is the FDP’s Shepard diagram, however,
that appears to show less deviation from the diagonal
overall. This is perhaps better illustrated in Figure 10,
where the 45 degree diagonal line has been drawn.
It may be noted that two separate clusters of points

exist on the Shepard diagram of the FDP layout. Again,
an initial reaction may be to assume that each of these
corresponds to one of the sub-clusters identified in the
FDP layout. This is not the case, although the
‘clustering’ of the Shepard diagram is due to the
presence of two clusters in the FDP layout. The
Shepard diagram plots distances, and therefore the two
apparent distinct groups of points on the Shepard
diagram correspond to distinct ranges of distances
within the layout. The lower of the two groups refers to
pairwise distances between objects in the same sub-
cluster, whereas the higher group represents inter-
cluster pairs.
These examples have illustrated the advantages of

HIVE’s multi-view framework over single static
layouts. The provision of profiling modules provides
further insight into data sets. Linking and interactive
coordination between such views encourage further
exploration and leads to greater understanding.

5. Future work

As stated in Section 2.2, when the user specifies a
data set to be visualised, HIVE can automatically
provide a suitable hybrid layout solution from its
‘cookbook’ of algorithms. Having developed modules
for evaluating such algorithms, it would be interesting
to devise a means of automatically instantiating and
placing these profiling tools in strategic places (probe
points). This would simplify evaluation and provide
feedback to the user regarding the performance at
critical parts of the algorithm.
Another avenue of future work is to expand on the

coordination methods available in our system. HIVE
currently supports only data-centric brushing and
linking. We aim to investigate other methods of view
coordination including representation-centric
techniques such as synchronised panning and zooming.
We are currently working upon improving the

Voronoi-based clustering module. Gestalt clusters and
other interesting patterns are not directly identified by

the layout algorithms we work with. The algorithms
only reduce the dimensionality of the data so that they
can be plotted and therefore rely on the human visual
system to pick out patterns. Voronoi-based clustering is
used to help the user pick out these patterns and
ongoing work is focussed on refining this clustering in
the reduced space. We are also investigating ways of
determining the validity of the clusters identified. It
would be interesting to assess the homogeneity of those
clusters and also ascertain which clusters contain points
that contribute most to layout stress and degeneration.
As mentioned in Section 4.1, we are also working

on the coordination between line charts and scatterplot
modules, in order to provide an historical account of the
layout process.

6. Conclusions

We have presented a number of components within
the HIVE system that are used to profile, understand
and control other HIVE components. We outlined their
construction, and gave examples of their use and utility.
One of the advantages of bringing such components
into a visualisation system is to support the process of
understanding the strengths, weaknesses and
interdependencies of algorithmic components. Through
techniques such as recording and displaying the
performance of ongoing runs, and linking layouts from
complementary algorithms and from intermediate
stages, we suggest that designers and users can explore
not only the data but also the ways that the system
represents, transforms and presents that data.
More generally, this work explores the way that

making a visualisation that is customised to one’s data
and interests, and which takes advantage of a palette of
algorithmic components, can be a complex task—a task
that may be aided by modern tools for interaction and
visualisation. It would be frustrating and limiting for
designers and for users if powerful tools for analysis
and understanding data were themselves difficult to
analyse and understand. Therefore we suggest that the
use of visualisation for visualisation – in the form of
well-designed interaction with the components,
processes and parameters of a visualisation system –
may afford deeper insight into the visualised
information itself.
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