1,801 research outputs found

    Coupling functions for lead and lead-free neutron monitors from the latitudinal measurements performed in 1982 in the research station Academician Kurchatov

    Get PDF
    The latitudinal behavior of intensities and multiplicities was registered by the neutron monitor 2 NM and the lead-free neutron monitor 3 SND (slow-neuron detector) in the equator-Kaliningrad line in the Atlantic Ocean. Coupling coefficients for 3 SND show the sensitivity of this detector to primary particles of cosmic rays of energies on the average lower than for 2 NM. As multiplicities increase, the coupling coefficients shift towards higher energies

    Spectrum of qubit oscillations from Bloch equations

    Full text link
    We have developed a formalism suitable for calculation of the output spectrum of a detector continuously measuring quantum coherent oscillations in a solid-state qubit, starting from microscopic Bloch equations. The results coincide with that obtained using Bayesian and master equation approaches. The previous results are generalized to the cases of arbitrary detector response and finite detector temperature.Comment: 8 page

    Method for direct observation of coherent quantum oscillations in a superconducting phase qubit

    Full text link
    Time-domain observations of coherent oscillations between quantum states in mesoscopic superconducting systems were so far restricted to restoring the time-dependent probability distribution from the readout statistics. We propose a new method for direct observation of Rabi oscillations in a phase qubit. The external source, typically in GHz range, induces transitions between the qubit levels. The resulting Rabi oscillations of supercurrent in the qubit loop are detected by a high quality resonant tank circuit, inductively coupled to the phase qubit. Detailed calculation for zero and non-zero temperature are made for the case of persistent current qubit. According to the estimates for dephasing and relaxation times, the effect can be detected using conventional rf circuitry, with Rabi frequency in MHz range.Comment: 5 pages, 1 figure, to appear in Phys.Rev.

    Coherence of a Josephson phase qubit under partial-collapse measurement

    Full text link
    We discuss quantum evolution of a decaying state in relation to a recent experiment of Katz et al. Based on exact analytical and numerical solutions of a simple model, we identify a regime where qubit retains coherence over a finite time interval independently of the rates of three competing decoherence processes. In this regime, the quantum decay process can be continuously monitored via a ``weak'' measurement without affecting the qubit coherence.Comment: 4p., 2eps figure

    Positive cross-correlations due to Dynamical Channel-Blockade in a three-terminal quantum dot

    Full text link
    We investigate current fluctuations in a three-terminal quantum dot in the sequential tunneling regime. In the voltage-bias configuration chosen here, the circuit is operated like a beam splitter, i.e. one lead is used as an input and the other two as outputs. In the limit where a double occupancy of the dot is not possible, a super-Poissonian Fano factor of the current in the input lead and positive cross-correlations between the current fluctuations in the two output leads can be obtained, due to dynamical channel-blockade. When a single orbital of the dot transports current, this effect can be obtained by lifting the spin-degeneracy of the circuit with ferromagnetic leads or with a magnetic field. When several orbitals participate in the electronic conduction, lifting spin-degeneracy is not necessary. In all cases, we show that a super-Poissonian Fano factor for the input current is not equivalent to positive cross-correlations between the outputs. We identify the conditions for obtaining these two effects and discuss possible experimental realizations.Comment: 18 pages, 20 Figures, submitted to Phys. rev.

    Measurement induced quantum-classical transition

    Full text link
    A model of an electrical point contact coupled to a mechanical system (oscillator) is studied to simulate the dephasing effect of measurement on a quantum system. The problem is solved at zero temperature under conditions of strong non-equilibrium in the measurement apparatus. For linear coupling between the oscillator and tunneling electrons, it is found that the oscillator dynamics becomes damped, with the effective temperature determined by the voltage drop across the junction. It is demonstrated that both the quantum heating and the quantum damping of the oscillator manifest themselves in the current-voltage characteristic of the point contact.Comment: in RevTex, 1 figure, corrected notatio

    Enhanced shot noise in resonant tunnelling via interacting localised states

    Full text link
    In a variety of mesoscopic systems shot noise is seen to be suppressed in comparison with its Poisson value. In this work we observe a considerable enhancement of shot noise in the case of resonant tunnelling via localised states. We present a model of correlated transport through two localised states which provides both a qualitative and quantitative description of this effect.Comment: 4 pages, 4 figure

    Switching barrier scaling near bifurcation points for non-Gaussian noise

    Get PDF
    We study noise-induced switching of a system close to bifurcation parameter values where the number of stable states changes. For non-Gaussian noise, the switching exponent, which gives the logarithm of the switching rate, displays a non-power-law dependence on the distance to the bifurcation point. This dependence is found for Poisson noise. Even weak additional Gaussian noise dominates switching sufficiently close to the bifurcation point, leading to a crossover in the behavior of the switching exponent
    • …
    corecore