17,353 research outputs found

    Effect on smoking quit rate of telling patients their lung age: the Step2quit randomised controlled trial

    Get PDF
    Objective To evaluate the impact of telling patients their estimated spirometric lung age as an incentive to quit smoking.Design Randomised controlled trial.Setting Five general practices in Hertfordshire, England.Participants 561 current smokers aged over 35.Intervention All participants were offered spirometric assessment of lung function. Participants in intervention group received their results in terms of "lung age" (the age of the average healthy individual who would perform similar to them on spirometry). Those in the control group received a raw figure for forced expiratory volume at one second (FEV1). Both groups were advised to quit and offered referral to local NHS smoking cessation services.Main outcome measures The primary outcome measure was verified cessation of smoking by salivary cotinine testing 12 months after recruitment. Secondary outcomes were reported changes in daily consumption of cigarettes and identification of new diagnoses of chronic obstructive lung disease.Results Follow-up was 89%. Independently verified quit rates at 12 months in the intervention and control groups, respectively, were 13.6% and 6.4% (difference 7.2%, P=0.005, 95% confidence interval 2.2% to 12.1%; number needed to treat 14). People with worse spirometric lung age were no more likely to have quit than those with normal lung age in either group. Cost per successful quitter was estimated at 280 pound ((euro) 365, $556). A new diagnosis of obstructive lung disease was made in 17% in the intervention group and 14% in the control group; a total of 16% (89/561) of participants.Conclusion Telling smokers their lung age significantly improves the likelihood of them quitting smoking, but the mechanism by which this intervention achieves its effect is unclear.Trial registration National Research Register N0096173751

    Recent trends in the incidence of anxiety diagnoses and symptoms in primary care.

    Get PDF
    Anxiety is common, with significant morbidity, but little is known about presentations and recording of anxiety diagnoses and symptoms in primary care. This study aimed to determine trends in incidence and socio-demographic variation in General Practitioner (GP) recorded diagnoses of anxiety, mixed anxiety/depression, panic and anxiety symptoms

    Viscosity of strongly interacting quantum fluids: spectral functions and sum rules

    Get PDF
    The viscosity of strongly interacting systems is a topic of great interest in diverse fields. We focus here on the bulk and shear viscosities of \emph{non-relativistic} quantum fluids, with particular emphasis on strongly interacting ultracold Fermi gases. We use Kubo formulas for the bulk and shear viscosity spectral functions, ζ(ω)\zeta(\omega) and η(ω)\eta(\omega) respectively, to derive exact, non-perturbative results. Our results include: a microscopic connection between the shear viscosity η\eta and the normal fluid density ρn\rho_n; sum rules for ζ(ω)\zeta(\omega) and η(ω)\eta(\omega) and their evolution through the BCS-BEC crossover; universal high-frequency tails for η(ω)\eta(\omega) and the dynamic structure factor S(q,ω)S({\bf q}, \omega). We use our sum rules to show that, at unitarity, ζ(ω)\zeta(\omega) is identically zero and thus relate η(ω)\eta(\omega) to density-density correlations. We predict that frequency-dependent shear viscosity η(ω)\eta(\omega) of the unitary Fermi gas can be experimentally measured using Bragg spectroscopy.Comment: Published versio

    Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures

    Full text link
    The superfluid density is a fundamental quantity describing the response to a rotation as well as in two-fluid collisional hydrodynamics. We present extensive calculations of the superfluid density \rho_s in the BCS-BEC crossover regime of a uniform superfluid Fermi gas at finite temperatures. We include strong-coupling or fluctuation effects on these quantities within a Gaussian approximation. We also incorporate the same fluctuation effects into the BCS single-particle excitations described by the superfluid order parameter \Delta and Fermi chemical potential \mu, using the Nozi\`eres and Schmitt-Rink (NSR) approximation. This treatment is shown to be necessary for consistent treatment of \rho_s over the entire BCS-BEC crossover. We also calculate the condensate fraction N_c as a function of the temperature, a quantity which is quite different from the superfluid density \rho_s. We show that the mean-field expression for the condensate fraction N_c is a good approximation even in the strong-coupling BEC regime. Our numerical results show how \rho_s and N_c depend on temperature, from the weak-coupling BCS region to the BEC region of tightly-bound Cooper pair molecules. In a companion paper by the authors (cond-mat/0609187), we derive an equivalent expression for \rho_s from the thermodynamic potential, which exhibits the role of the pairing fluctuations in a more explicit manner.Comment: 32 pages, 12 figure

    Single-particle excitations in the BCS-BEC crossover region II: Broad Feshbach resonance

    Full text link
    We apply the formulation developed in a recent paper [Y. Ohashi and A. Griffin, Phys. Rev. A {\bf 72}, 013601, (2005)] for single-particle excitations in the BCS-BEC crossover to the case of a broad Feshbach resonance. At T=0, we solve the Bogoliubov-de Gennes coupled equations taking into account a Bose condensate of bound states (molecules). In the case of a broad resonance, the density profile n(r)n(r), as well as the profile of the superfluid order parameter Δ~(r){\tilde \Delta}(r), are spatially spread out to the Thomas-Fermi radius, even in the crossover region. This order parameter Δ~(r){\tilde \Delta}(r) suppresses the effects of low-energy Andreev bound states on the rf-tunneling current. As a result, the peak energy in the rf-spectrum is found to occur at an energy equal to the superfluid order parameter Δ~(r=0){\tilde \Delta}(r=0) at the center of the trap, in contrast to the case of a narrow resonance, and in agreement with recent measurements. The LDA is found to give a good approximation for the rf-tunneling spectrum.Comment: 14 pages, 8 figure

    Single-particle and collective excitations in a charged Bose gas at finite temperature

    Full text link
    The main focus of this work is on the predictions made by the dielectric formalism in regard to the relationship between single-particle and collective excitation spectra in a gas of point-like charged bosons at finite temperature TT below the critical region of Bose-Einstein condensation. Illustrative numerical results at weak coupling (rs=1r_s = 1) are presented within the Random Phase Approximation. We show that within this approach the single-particle spectrum forms a continuum extending from the transverse to the longitudinal plasma mode frequency and leading to a double-peak structure as TT increases, whereas the density fluctuation spectrum consists of a single broadening peak. We also discuss the momentum distribution and the superfluidity of the gas.Comment: 15 pages, 5 figure
    corecore