research

Single-particle excitations in the BCS-BEC crossover region II: Broad Feshbach resonance

Abstract

We apply the formulation developed in a recent paper [Y. Ohashi and A. Griffin, Phys. Rev. A {\bf 72}, 013601, (2005)] for single-particle excitations in the BCS-BEC crossover to the case of a broad Feshbach resonance. At T=0, we solve the Bogoliubov-de Gennes coupled equations taking into account a Bose condensate of bound states (molecules). In the case of a broad resonance, the density profile n(r)n(r), as well as the profile of the superfluid order parameter Δ~(r){\tilde \Delta}(r), are spatially spread out to the Thomas-Fermi radius, even in the crossover region. This order parameter Δ~(r){\tilde \Delta}(r) suppresses the effects of low-energy Andreev bound states on the rf-tunneling current. As a result, the peak energy in the rf-spectrum is found to occur at an energy equal to the superfluid order parameter Δ~(r=0){\tilde \Delta}(r=0) at the center of the trap, in contrast to the case of a narrow resonance, and in agreement with recent measurements. The LDA is found to give a good approximation for the rf-tunneling spectrum.Comment: 14 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020