9,637 research outputs found

    Swift Pointing and the Association Between Gamma-Ray Bursts and Gravitational-Wave Bursts

    Full text link
    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested, the black hole progenitor (e.g., coalescing binary or collapsing stellar core) identified, and the origin of the gamma rays (within the expanding relativistic fireball or at the point of impact on the interstellar medium) located. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. To do any of these requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray burst observations depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based ``figure of merit'' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts.Comment: aastex, 14 pages, 2 figure

    Expenditure-based segmentation and visitor profiling at The Quays in Salford, UK

    Get PDF
    There is a substantial body of literature relating to tourism’s economic impact at the macro level, but less is known about tourist expenditure at a micro scale. This paper reports findings from a survey of day-visitor expenditure by category at The Quays in Salford, UK. Expenditure is influenced strongly by the visitor’s age, frequency of visitation and visit motivation. Heavy, medium and light expenditure segments and associated profiles are identified. ‘Heavy spenders’ are more likely to be female, in a family group and have shopping as the main motivation for the visit. The implications of the findings are discussed

    Information Preserving Component Analysis: Data Projections for Flow Cytometry Analysis

    Full text link
    Flow cytometry is often used to characterize the malignant cells in leukemia and lymphoma patients, traced to the level of the individual cell. Typically, flow cytometric data analysis is performed through a series of 2-dimensional projections onto the axes of the data set. Through the years, clinicians have determined combinations of different fluorescent markers which generate relatively known expression patterns for specific subtypes of leukemia and lymphoma -- cancers of the hematopoietic system. By only viewing a series of 2-dimensional projections, the high-dimensional nature of the data is rarely exploited. In this paper we present a means of determining a low-dimensional projection which maintains the high-dimensional relationships (i.e. information) between differing oncological data sets. By using machine learning techniques, we allow clinicians to visualize data in a low dimension defined by a linear combination of all of the available markers, rather than just 2 at a time. This provides an aid in diagnosing similar forms of cancer, as well as a means for variable selection in exploratory flow cytometric research. We refer to our method as Information Preserving Component Analysis (IPCA).Comment: 26 page

    Magnetic Flux Tube Reconnection: Tunneling Versus Slingshot

    Full text link
    The discrete nature of the solar magnetic field as it emerges into the corona through the photosphere indicates that it exists as isolated flux tubes in the convection zone, and will remain as discrete flux tubes in the corona until it collides and reconnects with other coronal fields. Collisions of these flux tubes will in general be three dimensional, and will often lead to reconnection, both rearranging the magnetic field topology in fundamental ways, and releasing magnetic energy. With the goal of better understanding these dynamics, we carry out a set of numerical experiments exploring fundamental characteristics of three dimensional magnetic flux tube reconnection. We first show that reconnecting flux tubes at opposite extremes of twist behave very differently: in some configurations, low twist tubes slingshot while high twist tubes tunnel. We then discuss a theory explaining these differences: by assuming helicity conservation during the reconnection one can show that at high twist, tunneled tubes reach a lower magnetic energy state than slingshot tubes, whereas at low twist the opposite holds. We test three predictions made by this theory. 1) We find that the level of twist at which the transition from slingshot to tunnel occurs is about two to three times higher than predicted on the basis of energetics and helicity conservation alone, probably because the dynamics of the reconnection play a large role as well. 2) We find that the tunnel occurs at all flux tube collision angles predicted by the theory. 3) We find that the amount of magnetic energy a slingshot or a tunnel reconnection releases agrees reasonably well with the theory, though at the high resistivities we have to use for numerical stability, a significant amount of magnetic energy is lost to diffusion, independent of reconnection.Comment: 21 pages, 15 figures, submitted to Ap

    Productive tensions - engaging geography students in participatory action research with communities

    Get PDF
    ArticleCopyright © 2013 copyright Taylor & Francis.This study discusses the benefits and challenges of an undergraduate module on participatory geographies, involving students in co-producing research with community partners. The module challenges the knowledge production model predominant in Geography curricula. We argue that it develops students' skills and understanding through engaging them intellectually, socially and emotionally outside the university. As a student, two community partners and a professor, we offer our perspectives on the opportunities and conflicts that arose. We do not gloss over tensions in achieving the module's diverse aims, but suggest that these are productive for teaching, learning, research and the needs of community organizations

    Resolution of Cosmological Singularities

    Get PDF
    We show that a class of 3+1 dimensional Friedmann-Robertson-Walker cosmologies can be embedded within a variety of solutions of string theory. In some realizations the apparent singularities associated with the big bang or big crunch are resolved at non-singular horizons of higher-dimensional quasi-black hole solutions (with compactified real time); in others plausibly they are resolved at D-brane bound states having no conventional space-time interpretation.Comment: 11 pages, latex. Two references added, one typo correcte

    Improving the efficiency of the detection of gravitational wave signals from inspiraling compact binaries: Chebyshev interpolation

    Full text link
    Inspiraling compact binaries are promising sources of gravitational waves for ground and space-based laser interferometric detectors. The time-dependent signature of these sources in the detectors is a well-characterized function of a relatively small number of parameters; thus, the favored analysis technique makes use of matched filtering and maximum likelihood methods. Current analysis methodology samples the matched filter output at parameter values chosen so that the correlation between successive samples is 97% for which the filtered output is closely correlated. Here we describe a straightforward and practical way of using interpolation to take advantage of the correlation between the matched filter output associated with nearby points in the parameter space to significantly reduce the number of matched filter evaluations without sacrificing the efficiency with which real signals are recognized. Because the computational cost of the analysis is driven almost exclusively by the matched filter evaluations, this translates directly into an increase in computational efficiency, which in turn, translates into an increase in the size of the parameter space that can be analyzed and, thus, the science that can be accomplished with the data. As a demonstration we compare the present "dense sampling" analysis methodology with our proposed "interpolation" methodology, restricted to one dimension of the multi-dimensional analysis problem. We find that the interpolated search reduces by 25% the number of filter evaluations required by the dense search with 97% correlation to achieve the same efficiency of detection for an expected false alarm probability. Generalized to higher dimensional space of a generic binary including spins suggests an order of magnitude increase in computational efficiency.Comment: 23 pages, 5 figures, submitted to Phys. Rev.

    Black Hole Spectroscopy: Testing General Relativity through Gravitational Wave Observations

    Full text link
    Assuming that general relativity is the correct theory of gravity in the strong field limit, can gravitational wave observations distinguish between black hole and other compact object sources? Alternatively, can gravitational wave observations provide a test of one of the fundamental predictions of general relativity? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originated from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black hole quasi-normal mode spectrum is characterized entirely by the black hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity, together with a numerical example.Comment: 19 pages, 7 figure
    • 

    corecore