60 research outputs found

    SMN protein promotes membrane compartmentalization of ribosomal protein S6 transcript in human fibroblasts

    Get PDF
    Alterations of RNA homeostasis can lead to severe pathological conditions. The Survival of Motor Neuron (SMN) protein, which is reduced in Spinal Muscular Atrophy, impacts critical aspects of the RNA life cycle, such as splicing, trafficking, and translation. Increasing evidence points to a potential role of SMN in ribosome biogenesis. Our previous study revealed that SMN promotes membrane-bound ribosomal proteins (RPs), sustaining activity-dependent local translation. Here, we suggest that plasma membrane domains could be a docking site not only for RPs but also for their encoding transcripts. We have shown that SMN knockdown perturbs subcellular localization as well as translation efficiency of RPS6 mRNA. We have also shown that plasma membrane-enriched fractions from human fibroblasts retain RPS6 transcripts in an SMN-dependent manner. Furthermore, we revealed that SMN traffics with RPS6 mRNA promoting its association with caveolin-1, a key component of membrane dynamics. Overall, these findings further support the SMN-mediated crosstalk between plasma membrane dynamics and translation machinery. Importantly, our study points to a potential role of SMN in the ribosome assembly pathway by selective RPs synthesis/localization in both space and time

    Immunological effects of a single hemodialysis treatment

    Get PDF
    Immune disorders, involving both innate and adaptive response, are common in patients with end-stage renal disease under chronic hemodialysis. Endogenous and exogenous factors, such as uremic toxins and the extracorporeal treatment itself, alter the immune balance, leading to chronic inflammation and higher risk of cardiovascular events. Several studies have previously described the immune effects of chronic hemodialysis and the possibility to modulate inflammation through more biocompatible dialyzers and innovative techniques. On the other hand, very limited data are available on the possible immunological effects of a single hemodialysis treatment. In spite of the lacking information about the immunological reactivity related to a single session, there is evidence to indicate that mediators of innate and adaptive response, above all complement cascade and T cells, are implicated in immune system modulation during hemodialysis treatment. Expanding our understanding of these modulations represents a necessary basis to develop pro-tolerogenic strategies in specific conditions, like hemodialysis in septic patients or the last session prior to kidney transplant in candidates for receiving a graft

    High Grade Glioma Treatment in Elderly People: Is It Different Than in Younger Patients? Analysis of Surgical Management Guided by an Intraoperative Multimodal Approach and Its Impact on Clinical Outcome

    Get PDF
    Objective: Age is considered a negative prognostic factor for High Grade Gliomas (HGGs) and many neurosurgeons remain skeptical about the benefits of aggressive treatment. New surgical and technological improvements may allow extended safe resection, with lower level of post-operative complications. This opportunity opens the unsolved question about the most appropriate HGG treatment in elderly patients. The aim of this study is to analyze if HGG maximal safe resection guided by an intraoperative multimodal imaging protocol coupled with neuromonitoring is associated with differences in outcome in elderly patients versus younger ones. Methods: We reviewed 100 patients, 53 (53%) males and 47 (47%) females, with median (IQR) age of 64 (57; 72) years. Eight patients were diagnosed with Anaplastic Astrocytoma (AA), 92 with Glioblastoma (GBM). Surgery was aimed to achieve safe maximal resection. An intraoperative multimodal imaging protocol, including neuronavigation, neurophysiological monitoring, 5-ALA fluorescence, 11C MET-PET, navigated i-US system and i-CT, was used, and its impact on EOTR and clinical outcome in elderly patients was analyzed. We divided patients in two groups according to their age: 65 years, and surgical and clinical results (EOTR, post-operative KPS, OS and PFS) were compared. Yet, to better understand age-related differences, the same patient cohort was also divided into 70 years and all the above data reanalyzed. Results: In the first cohort division, we did not found KPS difference over time and survival analysis did not show significant difference between the two groups (p = 0.36 for OS and p = 0.49 for PFS). Same results were obtained increasing the age cut-off for age up to 70 years (p = 0.52 for OS and p = 0.92 for PFS). Conclusions: Our data demonstrate that there is not statistically significant difference in post-operative EOTR, KPS, OS, and PFS between younger and elderly patients treated with extensive tumor resection aided by a intraoperative multimodal protocol

    Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory.

    Get PDF
    Different pathological tau species are involved in memory loss in Alzheimer’s disease, the most common cause of dementia among older people. However, little is known about how tau pathology directly affects adult hippocampal neurogenesis, a unique form of structural plasticity implicated in hippocampusdependent spatial learning and mood-related behavior. To this aim, we generated a transgenic mouse model conditionally expressing a pathological tau fragment (26e230 aa of the longest human tau isoform, or N-tau) in nestin-positive stem/progenitor cells. We found that N-tau reduced the proliferation of progenitor cells in the adult dentate gyrus, reduced cell survival and increased cell death by a caspase- 3eindependent mechanism, and recruited microglia. Although the number of terminally differentiated neurons was reduced, these showed an increased dendritic arborization and spine density. This resulted in an increase of anxiety-related behavior and an impairment of episodic-like memory, whereas less complex forms of spatial learning remained unaltered. Understanding how pathological tau species directly affect neurogenesis is important for developing potential therapeutic strategies to direct neurogenic instructive cues for hippocampal function repair

    NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death

    Get PDF
    Neurotrophin receptor-interacting MAGE homolog (NRAGE) has been recently identified as a cell-death inducer, involved in molecular events driving cells through apoptotic networks during neuronal development. Recently, we have focused on the functional role of Che-1, also known as apoptosis-antagonizing transcription factor (AATF), a protein involved in cell cycle control and gene transcription. Increasing evidence suggests that Che-1 is involved in apoptotic signalling in neural tissues. In cortical neurons Che-1 exhibits an anti-apoptotic activity, protecting cells from neuronal damage induced by amyloid β-peptide. Here, we report that Che-1 interacts with NRAGE and that an EGFP-NRAGE fusion protein inhibits nuclear localization of Che-1, by sequestering it within the cytoplasmic compartment. Furthermore, NRAGE overexpression downregulates endogenous Che-1 by targeting it for proteasome-dependent degradation. Finally, we propose that Che-1 is a functional antagonist of NRAGE, because its overexpression completely reverts NRAGE-induced cell-death

    The eEF1γ Subunit Contacts RNA Polymerase II and Binds Vimentin Promoter Region

    Get PDF
    Here, we show that the eukaryotic translation elongation factor 1 gamma (eEF1γ) physically interacts with the RNA polymerase II (pol II) core subunit 3 (RPB3), both in isolation and in the context of the holo-enzyme. Importantly, eEF1γ has been recently shown to bind Vimentin mRNA. By chromatin immunoprecipitation experiments, we demonstrate, for the first time, that eEF1γ is also physically present on the genomic locus corresponding to the promoter region of human Vimentin gene. The eEF1γ depletion causes the Vimentin protein to be incorrectly compartmentalised and to severely compromise cellular shape and mitochondria localisation. We demonstrate that eEF1γ partially colocalises with the mitochondrial marker Tom20 and that eEF1γ depletion increases mitochondrial superoxide generation as well as the total levels of carbonylated proteins. Finally, we hypothesise that eEF1γ, in addition to its role in translation elongation complex, is involved in regulating Vimentin gene by contacting both pol II and the Vimentin promoter region and then shuttling/nursing the Vimentin mRNA from its gene locus to its appropriate cellular compartment for translation

    Differential Requirement for Utrophin in the Induced Pluripotent Stem Cell Correction of Muscle versus Fat in Muscular Dystrophy Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is an incurable degenerative muscle disorder. We injected WT mouse induced pluripotent stem cells (iPSCs) into mdx and mdx∶utrophin mutant blastocysts, which are predisposed to develop DMD with an increasing degree of severity (mdx <<< mdx∶utrophin). In mdx chimeras, iPSC-dystrophin was supplied to the muscle sarcolemma to effect corrections at morphological and functional levels. Dystrobrevin was observed in dystrophin-positive and, at a lesser extent, utrophin-positive areas. In the mdx∶utrophin mutant chimeras, although iPSC-dystrophin was also supplied to the muscle sarcolemma, mice still displayed poor skeletal muscle histopathology, and negligible levels of dystrobrevin in dystrophin- and utrophin-negative areas. Not only dystrophin-expressing tissues are affected by iPSCs. Mdx and mdx∶utrophin mice have reduced fat/body weight ratio, but iPSC injection normalized this parameter in both mdx and mdx∶utrophin chimeras, despite the fact that utrophin was compromised in the mdx∶utrophin chimeric fat. The results suggest that the presence of utrophin is required for the iPSC-corrections in skeletal muscle. Furthermore, the results highlight a potential (utrophin-independent) non-cell autonomous role for iPSC-dystrophin in the corrections of non-muscle tissue like fat, which is intimately related to the muscle

    Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice

    Get PDF
    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics
    corecore