8,588 research outputs found

    An exact representation of the fermion dynamics in terms of Poisson processes and its connection with Monte Carlo algorithms

    Full text link
    We present a simple derivation of a Feynman-Kac type formula to study fermionic systems. In this approach the real time or the imaginary time dynamics is expressed in terms of the evolution of a collection of Poisson processes. A computer implementation of this formula leads to a family of algorithms parametrized by the values of the jump rates of the Poisson processes. From these an optimal algorithm can be chosen which coincides with the Green Function Monte Carlo method in the limit when the latter becomes exact.Comment: 4 pages, 1 PostScript figure, REVTe

    Exact ground state for a class of matrix Hamiltonian models: quantum phase transition and universality in the thermodynamic limit

    Full text link
    By using a recently proposed probabilistic approach, we determine the exact ground state of a class of matrix Hamiltonian models characterized by the fact that in the thermodynamic limit the multiplicities of the potential values assumed by the system during its evolution are distributed according to a multinomial probability density. The class includes i) the uniformly fully connected models, namely a collection of states all connected with equal hopping coefficients and in the presence of a potential operator with arbitrary levels and degeneracies, and ii) the random potential systems, in which the hopping operator is generic and arbitrary potential levels are assigned randomly to the states with arbitrary probabilities. For this class of models we find a universal thermodynamic limit characterized only by the levels of the potential, rescaled by the ground-state energy of the system for zero potential, and by the corresponding degeneracies (probabilities). If the degeneracy (probability) of the lowest potential level tends to zero, the ground state of the system undergoes a quantum phase transition between a normal phase and a frozen phase with zero hopping energy. In the frozen phase the ground state condensates into the subspace spanned by the states of the system associated with the lowest potential level.Comment: 31 pages, 13 figure

    Analytical probabilistic approach to the ground state of lattice quantum systems: exact results in terms of a cumulant expansion

    Full text link
    We present a large deviation analysis of a recently proposed probabilistic approach to the study of the ground-state properties of lattice quantum systems. The ground-state energy, as well as the correlation functions in the ground state, are exactly determined as a series expansion in the cumulants of the multiplicities of the potential and hopping energies assumed by the system during its long-time evolution. Once these cumulants are known, even at a finite order, our approach provides the ground state analytically as a function of the Hamiltonian parameters. A scenario of possible applications of this analyticity property is discussed.Comment: 26 pages, 5 figure

    MARKOV DIFFUSIONS IN COMOVING COORDINATES AND STOCHASTIC QUANTIZATION OF THE FREE RELATIVISTIC SPINLESS PARTICLE

    Full text link
    We revisit the classical approach of comoving coordinates in relativistic hydrodynamics and we give a constructive proof for their global existence under suitable conditions which is proper for stochastic quantization. We show that it is possible to assign stochastic kinematics for the free relativistic spinless particle as a Markov diffusion globally defined on M4{\sf M}^4. Then introducing dynamics by means of a stochastic variational principle with Einstein's action, we are lead to positive-energy solutions of Klein-Gordon equation. The procedure exhibits relativistic covariance properties.Comment: 31 pages + 1 figure available upon request; Plain REVTe

    Exact Monte Carlo time dynamics in many-body lattice quantum systems

    Full text link
    On the base of a Feynman-Kac--type formula involving Poisson stochastic processes, recently a Monte Carlo algorithm has been introduced, which describes exactly the real- or imaginary-time evolution of many-body lattice quantum systems. We extend this algorithm to the exact simulation of time-dependent correlation functions. The techniques generally employed in Monte Carlo simulations to control fluctuations, namely reconfigurations and importance sampling, are adapted to the present algorithm and their validity is rigorously proved. We complete the analysis by several examples for the hard-core boson Hubbard model and for the Heisenberg model

    Scenarios in the experimental response of a vibro-impact single-degree-of-freedom system and numerical simulations

    Get PDF
    In this paper, possible scenarios within the experimental dynamic response of a vibro-impact single-degree-of-freedom system, symmetrically constrained by deformable and dissipative bumpers, were identified and described. The different scenarios were obtained varying selected parameters, namely peak table acceleration A , amplitude of the total gap between mass and bumpers G and bumper’s stiffness B. Subsequently, using a Simplified Nonlinear Model results in good agreement with the experimental outcomes were obtained, although the model includes only the nonlinearities due to clearance existence and impact occurrence. Further numerical analysis highlighted other scenarios that can be obtained for values of the parameters not considered in the experimental laboratory campaign. Finally, to attempt a generalization of the results, suitable dimensionless parameters were introduced

    A system dynamics model and analytic network process: An integrated approach to investigate urban resilience

    Get PDF
    During the last decade, the concept of urban resilience has been increasingly implemented in urban planning, with the main aim to design urban development strategies. Urban resilience is a multi-dimensional and dynamic concept. When applied to urban planning, it consists of studying cities as complex socio-economic systems. Municipalities are currently working to undertake appropriate actions to enrich the resilience of cities. Moreover, several difficulties concern the evaluation of the impacts over time of the strategies designed to enhance urban resilience. The present paper proposes an integrated approach based on the System Dynamics Model (SDM) and the Analytic Network Process (ANP). The objective of this research is to describe the method and to illustrate its application to the area called Basse di Stura, located in the city of Turin, Italy. The method is applied to evaluate the possible impacts of two different urban scenarios in terms of the change of urban resilience performance over time. The final result is represented by an index that describes urban resilience performance

    Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G

    Get PDF
    We developed a gravity-gradiometer based on atom interferometry for the determination of the Newtonian gravitational constant \textit{G}. The apparatus, combining a Rb fountain, Raman interferometry and a juggling scheme for fast launch of two atomic clouds, was specifically designed to reduce possible systematic effects. We present instrument performances and show that the sensor is able to detect the gravitational field induced by source masses. A discussion of projected accuracy for \textit{G} measurement using this new scheme shows that the results of the experiment will be significant to discriminate between previous inconsistent values.Comment: 9 pages,9 figures, Submitte

    Exact Ground State and Finite Size Scaling in a Supersymmetric Lattice Model

    Full text link
    We study a model of strongly correlated fermions in one dimension with extended N=2 supersymmetry. The model is related to the spin S=1/2S=1/2 XXZ Heisenberg chain at anisotropy Δ=−1/2\Delta=-1/2 with a real magnetic field on the boundary. We exploit the combinatorial properties of the ground state to determine its exact wave function on finite lattices with up to 30 sites. We compute several correlation functions of the fermionic and spin fields. We discuss the continuum limit by constructing lattice observables with well defined finite size scaling behavior. For the fermionic model with periodic boundary conditions we give the emptiness formation probability in closed form.Comment: 4 pages, 4 eps figure
    • …
    corecore