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Abstract In this paper, possible scenarios within the

experimental dynamic response of a vibro-impact single-

degree-of-freedom (SDOF) system, symmetrically con-

strained by deformable and dissipative bumpers, were

identified and described. The different scenarios were

obtained varying selected parameters, namely peak value

of table acceleration A, amplitude of the total gap be-

tween mass and bumpers G and bumper’s stiffness B.

Subsequently, using a Simplified Nonlinear Model (SNM),

results in good agreement with the experimental out-

comes were obtained, although the model includes only

the nonlinearities due to clearance existence and im-

pact occurrence. Further numerical analysis highlighted

other scenarios that can be obtained for values of the

parameters not considered in the experimental labora-

tory campaign. Finally, to attempt a generalization of
the results, suitable dimensionless parameters were in-

troduced.

Keywords Non-smooth dynamics · Vibro-impact

SDOF system · Double-sided deformable and dissi-
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model · Scenarios

1 Introduction

The problem of impact is ubiquitous in many practical

(biomedical, mechanical, civil, . . . ) engineering appli-

cations involving mechanical components or structures
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repeatedly colliding with one another or with obstacles

[1]. Impacts occur, for example, in the capsule systems

used in clinic endoscopy to inspect the surface lining

of the intestine in the human body. The dynamics of

this system is the subject of several works, of both nu-

merical and experimental nature [2–6]. In these studies

the endoscopy capsule is modelled by a two-degree-of-

freedom system, consisting of rigid capsule and a mov-

able internal mass, the latter driven by a harmonic

force with one-sided or two-sided constraints. In this

system impact occurs when the relative displacement

of the internal mass and the capsule exceeds the gap

between them. Non-smooth dynamics is observed also

in the drilling rig used in the oil and gas industry for

creation of the wells [7–12]. During drilling, the inter-

action between the drill-string, the fundamental part

of the rig, and the rock, is characterized by alternating

contact and noncontact phases that cause detrimental

axial, torsional and flexural vibrations.

In the context of structural pounding, the occur-

rence of exceptional loads, like severe earthquakes, can

produce large horizontal displacements in base-isolated

structures. If the large displacements cannot be accom-

modated through adequate gaps, they can lead to pound-

ing with the surrounding moat walls or adjacent struc-

tures. The consequences of pounding can range from

local to severe structural damage [13–19]. Furthermore,

the acceleration spikes, produced by the impacts, can

damage sensitive equipment housed in the structures

[20,21] and impair their functionality. Pounding is a

problem that also affects other systems like strategic fa-

cilities [22] and bridges [23–25]. When it is not possible

to guarantee a sufficient seismic gap, the side effects in-

duced by the occurrence of impacts can be mitigated re-

ducing the impact stiffness through the interposition of

dissipative and deformable shock absorbers (also known
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as bumpers) between the colliding systems. Anagnos-

topoulos [26] investigated the effects of pounding in sev-

eral adjacent buildings due to strong earthquakes and

found that the interposition of soft viscoelastic material

between two adjacent structures can reduce the effects

of pounding significantly. The effectiveness of rubber

bumpers as mitigation measure for pounding of seismi-

cally isolated buildings was numerically investigated in

[27,28]. Even in the absence of obstacles, there may be

a need to limit the displacements, so as to avoid the

damage of the isolation system. This objective could

be achieved either by inserting suitable obstacles or by

using other types of control systems [29,30].

Several scientific works, of both numerical and ex-

perimental nature, dealt with vibro-impact dynamics.

In the numerical simulations impact can be modelled

using both a steromechanical or a force-based approach

[31]. In the first approach, the duration of the contact

is neglected and the impact is modelled using the mo-

mentum conservation principle and the coefficient of

restitution, the latter defined as the ratio between the

post- and the pre-impact velocities [32]. In the second

approach, the contact force can be modelled in different

ways, resorting to more or less sophisticated modelling

[33–37]. The simplest model is represented by the lin-

ear spring element, which assumes a linear relation be-

tween the contact force and the penetration, not taking

into account the energy loss during the impact. Another

well-known contact force model, which, in turn, does

not account for energy dissipation, is the Hertz con-

tact model [38,39], represented by a nonlinear spring

element, in which the contact force is expressed as a

nonlinear power function of the penetration. In order

to overcome the limitations of the pure elastic contact

force models, dissipative contact force models were pro-

posed to take into account the energy loss during the

contact process. Among these, one of the first proposed

was the Kelvin-Voigt model which combines a linear

spring with a linear damper, arranged in parallel [32].

The existence of the damping component causes that,

at the beginning of the contact process, the damping

force is not null. Furthermore, at the end of the resti-

tution phase, the relative velocity, and thus the con-

tact force, is negative meaning that the colliding bod-

ies attract each other, but this does not make sense

from a physical point of view. Another limitation of

the model, not fully consistent with reality, is that the

assumption of a constant damping coefficient results in

a uniform dissipation during the impact time interval.

Despite these weaknesses, the Kelvin and Voigt model

has been used by a several researchers [40,41]. To over-

come the drawbacks of the Kelvin-Voigt model, Hunt

and Crossley [42] proposed a contact force model in

which the elastic Hertz’s law is combined with a non-

linear viscoelastic element (Hertzdamp model). Since

the damping term is expressed as a function of inden-

tation, the contact force is null both at the beginning

and at the end of the contact process.

There are several works in which the types of mo-

tion and bifurcations that can occur in the dynamics of

vibro-impact systems, with the variation of selected pa-

rameters, are investigated. Wagg and Bishop [43] inves-

tigated the dynamics of a two-degree-of-freedom impact

oscillator with motion limiting constraint, and high-

lighted a range of periodic and nonperiodic impact mo-

tions. They studied the bifurcations which occur be-

tween differing regimes of impacting motion, in partic-

ular those which occur due to a grazing bifurcation,

the periodic and chaotic chatter motions and the re-

gions of sticking. The dynamics of impact oscillators

with multiple degrees of freedom subject to more than

one motion limiting constraint and the possible impact

configurations were investigated by the same authors in

[44]. Then, considering a two-degree-of-freedom system

with two constraints, they used bifurcation diagrams

to indicate differing regimes of vibro-impacting motion

for two different constraint configurations. Rigaud and

Perret-Liaudet [45] investigated the experimental and

numerical dynamic responses of a double sphere-plane

preloaded Hertzian dry contact, excited by a purely har-

monic input normal force and obtained typical response

curves for several input levels. Luo et al. [46] considered

a two-degree-of-freedom system with a clearance sub-

jected to harmonic excitation and investigated the influ-

ence of the exciting frequency and clearance on dynamic

performance of the system. They defined the funda-

mental group of impact motions and studied the tran-

sitions from one motion to the other, which basically

goes through different types of bifurcations, and the

occurrence of chattering-impact vibration. The genera-

tion mechanism of complete and incomplete chattering-

impact vibration of the system was investigated in [47].

Luo and Wang [48] studied the dynamics of a two-

degree-of-freedom periodically-forced system with sym-

metric motion limiting constraints, with emphasis on

the mutual transition characteristics between neighbor-

ing regions of fundamental impact motions and designed

and realized an electronic circuit for physical implemen-

tation of dynamics of the system. Hao et al. [49] pro-

posed a two-sided damping constraint control strategy

to improve the performance of the quasi-zero stiffness

(QZS) isolator for both low- and high-frequency compo-

nents simultaneously and to prevent the severity of end-

stop impact. From the analysis of two-parameter bifur-

cation diagrams and basins of attraction, they found

that the key factor to realize such control objective
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is to suppress the period-3 solutions that coexist with

the desired small amplitude period-1 motions. Wang

et al. [50] investigated the dynamical behavior of a

single degree-of-freedom impact oscillator that impacts

at one stop and is shocked with impulse excitation at

the other stop and established the existing and sta-

bility conditions for period-1 motion of the oscillator

and its properties. Furthermore, they discussed the ef-

fects of system parameters on dynamical response un-

der different initial velocities. The nonlinear dynamic

behavior of a one-degree-of-freedom impact oscillator

with a single rigid constraint and controlled with an

OGY-based state-feedback control law was investigated

by Gritli and Belghith [51], through bifurcation dia-

grams. Using a hybrid Poincaré map, they illustrated,

through time-traces, phase portraits and Poincaré sec-

tions, the occurrence of several behaviors, including the

period-doubling route to chaos, the period-adding cas-

cade, interior and boundary crisis, the complete and in-

complete chaotic chattering, the cyclic-fold bifurcation,

the saddle-saddle bifurcation, the NeimarkSacker bi-

furcation, the sub-critical period-doubling bifurcation,

the grazing bifurcation and the border-collision bifurca-

tion. The response of a single-degree-of-freedom vibro-

impact model with the coefficient of restitution was

studied by de S. Rebouças et al. [52]. The authors inves-

tigated the experimental response of a cantilever beam

with unilateral constraint, different gap configurations

and levels of excitation, highlighted different qualita-

tive behaviors near vibro-impact resonance and used

numerical simulations to reproduce experimental ob-

servations.

The practical problem of base-isolated structures

impacting against moat-walls inspired several works of

the Authors, of both numerical and experimental na-

ture, in which the response of these structures was sim-

ulated using a single-degree-of-freedom (SDOF) oscilla-

tor, consisting of a mass isolated by means of an isolator

and impacting against two deformable and dissipative

constraints (bumpers), symmetrically arranged on the

sides. In the theoretical-numerical study presented by

Andreaus and De Angelis in [53], the analysis of the

system’s dynamic response allows the Authors to high-

light the presence of hysteresis ranges, jumps between

multi-periodic orbits, and super-harmonics and to ob-

serve how unilateral constraints modify the response

of the SDOF oscillator with respect to the absence

of bumpers. This numerical investigation guided sub-

sequent experimental parametric laboratory campaigns

[54,55], conducted on a small scale physical model of the

system using the shaking table and considering different

bumpers, gaps amplitudes, and table accelerations. The

influence of geometrical and mechanical characteristics

of isolation and mitigation devices on the nonlinear

non-smooth response of vibro-impact systems was ex-

perimentally and numerically investigated in [56]. Suit-

able choices of pairs of bumpers and gaps, that allows

to reach a trade-off between two conflicting objectives,

namely, control of excessive displacements and control

of excessive accelerations were suggested in [57] and a

numerical model was proposed in order to simulate the

experimental results. In [58] Stefani et al. focused the

attention on the experimental pseudo-resonance curves

of maximum absolute acceleration and excursion of the

SDOF oscillator and characterized the hysteresis zone

between the jumps. Some characteristics of the dynam-

ics with impact, evaluated from the experimental re-

sults, namely force and time of contact between mass

and bumpers, coefficient of restitution and energy dis-

sipated by the bumpers during the impact were pre-

sented and discussed in [59]. In [60], referring to the

experimental results relating to one of the considered

bumpers, different scenarios that can occur in the sys-

tem’s experimental response, varying the investigated

parameters, were highlighted and described. Those sce-

narios were reproduced also numerically using a Sim-

plified Nonlinear Model (SNM), described in terms of

dimensionless parameters.

The present work represents a deepening and an ex-

tension of the study presented in [60], the latter limited

to one of the considered bumpers. In this paper at-

tention is devoted to the identification and character-

ization of possible scenarios that can occur in the ex-

perimental response of the vibro-impact single-degree-

of-freedom (SDOF) system, symmetrically constrained
with deformable and dissipative bumpers, varying the

peak value of table acceleration A, the amplitude of

the total gap between mass and bumpers G and the

bumper’s stiffness B. Based on the experimental results,

the parameters of a Simplified Nonlinear Model (SNM)

were identified in order to reproduce the experimen-

tal scenarios. In this model both the behaviors of the

bumpers and the damper were modelled using a Kelvin-

Voigt model, retaining the other sources of nonlinearity,

namely the existence of clearances, the unilaterality of

the contact and the occurrence of impact, which causes

abrupt changes of stiffness and damping at the contact

time. Using the same model, further numerical analyses

were carried out in order to integrate the experimental

results and highlight the existence of other possible sce-

narios. Finally, in order to attempt a generalizations of

the obtained results, suitable dimensionless parameters

were introduced. The authors are aware of the limita-

tions of the Kelvin-Voigt model; however, they consider

this model satisfactory for the purposes of this work.
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Fig. 1 Model of the SDOF system.

As emerges from the scientific Literature on this

topic, there are not many works that in a such system-

atic way, resorting both to experimental and numerical

investigations, and using different synthetic representa-

tions, frame and classify the scenarios that can occur,

in the dynamic non-smooth response of a vibro-impact

SDOF system.

The paper is organized as follows. The numerical

model of the system and the equations of motion are

introduced in Section 2; the physical model and the ex-

perimental tests are described in Section 3; in Section

4 some of the experimental results and the identified

scenarios are shown and discussed; the identification

of the parameters of the Simplified Nonlinear Model

(SNM) and the comparison between experimental and

numerical results are presented in Section 5; in Sec-

tion 6 further numerical scenarios, obtained for values

of the parameters not experimentally investigated, are

presented and discussed; suitable dimensionless param-

eters and a rereading of the results according to these

parameters are given in Section 7; the main conclusions

and future developments are drawn in Section 8.

2 Model and Equations of motion

The numerical model of the SDOF oscillator is shown

in Figure 1. It consists of a mass M , a damper (D) and

two bumpers, denoted as right bumper (BR) and left

bumper (BL) respectively, symmetrically arranged on

the two sides of the mass. The system is subject to a

base excitation At(t).

During the motion, the system can be in three con-

figurations. The corresponding equations of motion are:

– The mass is not in contact with any of the bumpers

(flight):

Mü(t) + Cu̇(t) + F (t) = −MAt(t) (1a)

Cju̇j(t) + Fj(t) = 0; Gj(t) > 0 (j = R,L) (1b)

– The mass is in contact with the right bumper:

Mü(t) + Cu̇(t) + F (t) + CRu̇R(t) + FR(t) =

−MAt(t)
(2a)

CLu̇L(t) + FL(t) = 0; GR(t) = 0 (2b)

– The mass is in contact with the left bumper:

Mü(t) + Cu̇(t) + F (t) + CLu̇L(t) + FL(t) =

−MAt(t)
(3a)

CRu̇R(t) + FR(t) = 0; GL(t) = 0 (3b)

where u(t) and uj(t) (j = R, L) are the relative dis-

placements of the mass and of the bumpers respectively

with respect to the ground and the dot (.) denotes dif-

ferentiation with respect to the time t. C and Cj (j =

R, L) are the damping coefficients of the damper and

the bumpers respectively; F (t) and Fj(t) (j = R, L)

are the restoring forces exerted by the damper and the

bumpers respectively. Gj(t) (j = R, L) is the clearance

function which represents the distance, instant by in-

stant, between the mass and the j-th bumper:

Gj(t) = G0j +∆uj(t) (j = R,L) (4a)

∆uR(t) = uR(t)− u(t); ∆uL(t) = u(t)− uL(t) (4b)

where G0j (j = R, L) is the j-th initial gap, that is the

initial distance between the mass and the j-th bumper.

When the mass is in contact with the j-th bumper

Gj(t) = 0, otherwise Gj(t) > 0. In this study we con-

sidered two equal bumpers symmetrically positioned on



Scenarios in the experimental response of a vibro-impact single-degree-of-freedom system and numerical simulations 5

Fig. 2 Schematic view of the experimental setup.

the two sides of the mass. Thus, it is FR = FL, CR = CL

and G0R = G0L.

The studied physical model is strongly nonlinear.

Nonlinearities are due to the behavior of damper and

bumpers, the gap, the unilateral constrains and the im-

pact that induces abrupt changes of both stiffness and

damping.

3 Experimental setup

The physical model of the system consists of a rigid

body (mass M = 550 kg), an elastomeric high damp-

ing rubber bearing (HDRB) isolator (damper), and a

couple of symmetrically mounted elastomeric shock ab-

sorbers (bumpers placed on steel moat walls), as shown

in Figure 2.

The system was excited by a step-wise forward (f =

0.5 − 5 Hz with ∆f = 0.1 Hz) and backward (f =

5−0.5 Hz with∆f = 0.1 Hz) sine sweep in displacement

control, in order to impose a given peak acceleration A,

with a number of cycles such as to reach the steady state

condition. The attainment of the steady state condition

was checked by verifying the convergence to the limit

cycle in both planes of phase portraits and hysteresis

loops. Two configurations, with and without bumpers,

under the same base excitation, were considered [56].

The experimental tests were carried out to investi-

gate the influence on the system response of selected

parameters, namely:

– peak table acceleration Ai (i = 1, 2, 3); in particular

A1 = 0.03g, A2 = 0.04g, A3 = 0.05g, where g is the

gravity’s acceleration;

– amplitude of the total gap Gj (j = 1, 2, 3, 4 and G∞)

between mass and bumpers, defined as the sum of

right G0R and left G0L gaps (Figure 2); in particular

G1 = 15 mm, G2 = 20 mm, G3 = 25 mm, G4 = 30

mm and G∞ denotes all the situations in which the

gap is large enough not to have the impact between

the mass and the bumpers; this occurs both in the

free flight condition (absence of bumpers) and when

the mass just grazes the bumpers; in the latter case,

the corresponding value of G∞ depends on A;

– bumper’s stiffness Bk (k = 1, 2, 3, 4); the stiffness

of the bumper increases as k increases.

In the experimental laboratory campaign, each per-

formed test corresponds to a combination of these three

parameters.

The measured parameters during the tests were the

absolute accelerations and displacements of the mass

and of the shaking table. The accelerations were mea-

sured by accelerometers and the displacements were

measured by a laser transducer, for what concerns the

mass, and by an inductive transducer, for what con-

cerns the shaking table (Figure 2).

For a more detailed description of the experimental

setup see [57].

4 Experimental results

In this Section the experimental results, represented

in terms of forward and backward Pseudo-Resonance

Curves (PRCs) of normalized excursion of absolute ac-

celeration (ηa = Ea/Ea,flight,max) and relative displace-

ment (ηd = Ed/Ed,flight,max) of the mass, are discussed.

The excursion E was calculated as the difference be-

tween the maximum and minimum values recorded at

steady-state of each sub-frequency range. Subsequently,

these excursions E were normalized with respect to the

maximum excursion in the backward sweep in free flight

condition (Eflight,max). Based on this normalization, a

value of normalized excursion η greater than 1 means
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that in presence of bumpers the excursion is larger com-

pared to the free flight condition.

4.1 Free flight condition

In the free flight condition, that is when the mass is free

to move without obstacles, forward (in the following

Figures identified with the letter (f) in the legend) and

backward (in the following Figures indicated with the

letter (b) in the legend) PRCs of the excursion of abso-

lute acceleration (Ea) and relative displacement (Ed) of

the mass, show a softening behavior, due to the damper,

gradually more evident as the excitation amplitude A

increases.

Fig. 3 Free flight condition: a) Ea[m/s2]; b) Ed[mm].

As shown in Figure 3, as A increases (increasing

thickness of the lines and size of the markers), the max-

imum values of excursion, of both absolute acceleration

and relative displacement, increase and resonance oc-

curs for decreasing values of frequency. As can be seen

from the same Figures, even in the case of the maxi-

mum amplitude of the excitation considered in the lab-

oratory campaign (A3), the extension of the hysteresis

is limited.

4.2 Contact condition

When impact occurs, the PRCs bend to the right (Fig-

ures 4(b) and 4(c)) due to the hardening caused by

impact against the bumpers, as it can be seen in Fig-

ure 4(a), in which the absolute acceleration vs rela-

tive displacement cycles, in steady-state forward res-

onance condition, corresponding to the absence (free

flight, black curve) and presence of bumper (red curve,

corresponding to the combination B4-G4-A3) are com-

pared.

Fig. 4 Comparison between free flight and contact (B4-G4-
A3) condition: a) absolute acceleration vs relative displace-
ment cycle; b) ηa; c) ηd.
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In Figures 4(b) and 4(c), the same comparison is

made in terms of PRCs of normalized excursion of ab-

solute acceleration ηa (Figure 4(b)) and relative dis-

placement ηd (Figure 4(c)). In these Figures, the PRCs

corresponding to the free flight condition are repre-

sented with solid (forward sweep) and dashed (back-

ward sweep) black lines, whereas the PRCs represen-

tative of the contact condition (combination B4-G4-

A3) are represented with red (forward sweep) and blue

(backward sweep) markers.

By increasing the excitation frequency (red mark-

ers, forward sweep), the amplitude of the response in-

creases, initially overlapping the curve in free flight, un-

til impact occurs; subsequently, the response continues

to increase, following a different path until a sudden

downward jump (represented with a vertical red arrow

pointing downwards) to a smaller amplitude response

(associated with the absence of impact) occurs and then

continues to decrease slowly, overlapping the curve in

free flight.

If the exciting frequency is decreased (blue mark-

ers, backward sweep), the amplitude of the response in-

creases slowly, overlapping the curve in free flight, until

a sudden upward jump (represented with a vertical blue

arrow pointing upwards) to a larger amplitude response

(associated with the occurrence of impact) occurs and

then continues to decrease, following the corresponding

forward curve.

The presence of jumps give rise to an hysteresis in

the η vs f plane (primary resonance with right hystere-

sis), highlighted in Figures 4(b) and 4(c) with a light

grey shaded area. In the frequency interval between

the two jumps, for each value of frequency there are
three steady-state solutions, two stable, corresponding

respectively to large and small amplitude oscillations,

and one unstable and thus not experimentally repro-

ducible.

In following Figures 5 and 6 the forward (solid lines)

and backward (dashed lines) PRCs, respectively of nor-

malized excursion of absolute acceleration ηa (Figure 5)

and relative displacement ηd (Figure 6) of the mass, are

represented for different values of the total gap G (each

color corresponds to a gap amplitude). The sub-figures

belonging to the same column of the grid are charac-

terized by the same value of peak table acceleration A,

while the sub-figures belonging to the same row of the

grid correspond to the same bumper B.

From Figure 5 it can be observed that, compared to

the free flight condition, in presence of bumpers ηa is

always greater than 1, both in the forward and in the

backward sweeps, with the amplitude of the forward

resonance greater than that of the backward resonance.

For a given pair B-A, which corresponds to a sub-

figure in Figure 5 (for example B2-A3), compared to

the free flight condition, as the total gap G decreases,

the jump frequencies, both in the forward and in the

backward sweeps, the latter to a lesser extent, increase.

For the selected B-A pair, the maximum values of ex-

cursion, both in the forward and in the backward res-

onance condition, the latter to a lesser extent, show a

bell-shaped trend. For other combinations of B and A, it

is possible to capture only the ascending branch (see for

example the sub-figure corresponding to B1-A1) or only

the descending branch (see for example the sub-figure

corresponding to B4-A3) of the envelope of the max-

ima. Furthermore, decreasing the total gap, secondary

resonances in the low frequency range appear.

For a given pair B-G (see for example the second row

of sub-figures, associated with the bumper B2 and focus

the attention on the curves corresponding for example

to the total gap G1), increasing the table acceleration ,

that is moving from the left column to the right column,

it can be observed that the jump frequencies, both in

the forward and in the backward sweeps, the latter to a

lesser extent, increase. The maximum values of excur-

sion in the forward resonance condition increase, while

the maximum values of excursion in the backward res-

onance condition increase to a lesser extent. Further-

more, increasing the table acceleration, secondary res-

onances in the low frequency range appear.

With the same acceleration A and total gap G (see

for example the third column of sub-figures, associated

with the acceleration A3 and focus the attention on

the curves corresponding to the total gap G1), increas-

ing the bumper stiffness, that is moving from the top

row to the bottom row, it can be observed that the

jump frequencies, both in the forward and in the back-

ward sweeps, the latter to a lesser extent, increase. The

maximum values of excursion both in the forward and

in the backward resonance condition increase. Further-

more, increasing the stiffness of the bumper, secondary

resonances in the low frequency range appear. It can

also be observed that bumpers B2 and B3 behave in a

similar way.

From Figure 5, it can also be observed that in the

case of the combination of the most deformable bumper

with the smallest table acceleration (pair B1-A1, top

left corner of the Figure) PRCs are quite similar to

those associated with the free flight condition, while

the difference becomes more evident for the pair char-

acterized by the stiffest bumper and the greatest table

acceleration (pair B4-A3, lower right corner of the Fig-

ure).

Finally, a fixed point for f ' 1Hz can be observed,

especially for the higher values of B and A.
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Fig. 5 Experimental PRCs of ηa.
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Fig. 6 Experimental PRCs of ηd.
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From Figure 6 it can be observed that, compared to

the free flight condition, in presence of bumpers, due

to the limitation of the displacement imposed by the

constraint, ηd is always lower than 1, both in the for-

ward and in the backward sweeps, with the amplitude

of the forward resonance greater then that of the back-

ward resonance. This difference decreases increasing the

stiffness of the bumper.

It can be observed that, in the absence of impact,

PRCs overlap with those relating to the free flight con-

dition. The overlap can occur on both the ascending

branch, if impact occurs for frequencies greater that

0.5 Hz, and the descending branch, after the downward

jump in the forward sweep and before the upward jump

in the backward sweep. The upward jumps, compared

to the PRCs of ηa are less evident, especially in the case

of large gaps and small accelerations.

As regards the variation of the jumps frequencies,

and the appearance of secondary resonances, what has

already been said for ηa applies.

For a given pair B-A, which corresponds to a sub-

figure in Figure 6 (for example B2-A2), compared to the

free flight condition, as the total gap G decreases the

maximum values of excursion, both in the forward and

in the backward resonance condition decrease. In the

ascending branch, the deviation from the PRCs associ-

ated with the free flight condition, occurs for gradually

lower frequency values.

For a given pair B-G (see for example the second

row of sub-figures, associated with the bumper B2 and

focus the attention on the curves corresponding to the

total gap G1), increasing the table acceleration, that is
moving from the left column to the right column, it can

be observed that the maximum values of excursion both

in the forward and in the backward resonance condition

decrease.

With the same acceleration A and total gap G (see

for example the third column of sub-figures, associated

with the acceleration A3 and focus the attention on the

curves corresponding to the total gap G1), increasing

the bumper stiffness, that is moving from the top to the

bottom, it can be observed that the maximum values

of excursion both in the forward and in the backward

resonance condition decrease. It can also be observed

that bumpers B2 and B3 behave in a similar way. In-

creasing B, with the same pair G-A, the penetration of

the mass into the bumper decreases and becomes pro-

gressively independent of the forcing frequency. This

branch, characterized by a concavity for the most de-

formable bumper, becomes gradually more straight and

horizontal moving on to the bumper B4, which can be

assimilated to a quite rigid obstacle.

As already emerged from the Figure 5, also from

Figure 6, it can also be observed that in the case of the

combination of the most deformable bumper with the

smallest table acceleration (pair B1-A1, top left corner

of the Figure) PRCs are quite similar to those associ-

ated with the free flight condition, while the difference

becomes more evident for the pair characterized by the

stiffest bumper and the greatest table acceleration (pair

B4-A3, lower right corner of the Figure).

Finally, making a comparison, with the same fre-

quency, between the PRCs with and without bumpers,

it can be observed that in the presence of the bumpers

there are frequency ranges in which, contrary to what

one would expect, the excursion of relative displace-

ment of the mass can be greater than what occurs in

free flight condition.

Figures 5 and 6 provide analogous and dual indica-

tions, since they represent two different points of view

from which to observe the same problem. In particular,

they provide the same indications regarding the evolu-

tion of the jumps frequencies and the appearance of sec-

ondary resonances. Furthermore, they reflect the dual

evolution of the represented quantities, namely accel-

erations and displacements, that is the introduction of

the bumpers causes on the one hand the increase of

the accelerations and on the other the decrease of the

displacements.

4.3 Experimental scenarios

Based on the previous observations, as G decreases, dif-

ferent scenarios can be identified:

– Scenario 0 (S0): free flight condition;

– Scenario 1 (S1): grazing condition;

– Scenario 2 (S2): PRCs with only the primary reso-

nance with right hysteresis;

– Scenario 3 (S3): PRCs with both the primary reso-

nance with right hysteresis and the secondary reso-

nance in the low frequency range.

In the following these scenarios will be described,

starting from the scenario S3, in more detail. Phase

portraits, Fourier spectra and time histories in steady-

state condition will be analysed. In the time histories,

the time axis t will be normalized with respect to the

period T = 1/f of the harmonic base excitation.

Scenario S3 PRCs belonging to this scenario show both

the primary resonance with right hysteresis, between

the downward and upward jumps, and a secondary res-

onance without hysteresis in the low frequency range

without hysteresis. This scenario was experimentally

obtained with different combinations of the investigated
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Fig. 7 Scenario S3 (B2-G1-A3): a) ηa; b) ηd.

parameters. For example, the PRCs shown in Figure

7 correspond to the combination B2-G1-A3. The red

markers refer to the forward sweep, while the blue ones

to the backward sweep. The arrows indicate the two

jumps. The three vertical dashed lines represent three

values of frequency, corresponding respectively to the

secondary resonance (fI inside a circle), the following

valley (fII inside a circle) and the primary resonance

(fIII inside a circle), that will be investigated in more

detail. It is worth noting that, in this case impact occurs

already at 0.5 Hz.

By focusing the attention on the ridge of the sec-

ondary regular resonance without hysteresis (first verti-

cal dashed line on the left in Figure 7, denoted also with

a fI inside a circle), from Figure 8(a) it can be observed

that, in the phase plane, the two solutions, correspond-

ing to the forward (red line) and backward (blue line)

sweep are approximatively coincident. The red and blue

points represent the Poincaré sections and the two ver-

tical dashed lines indicate the gaps. These two coin-

cident solutions are characterized by several harmonic

components (as can be seen from Figure 8(d)), whose

amplitude decreases with increasing frequency. At the

secondary resonance, in each forcing cycle the mass hits

each bumper once, and these impacts are highlighted

by peaks in the time history of the absolute acceler-

ation (Figure 8(j)) and by sudden changes in relative

velocity (Figure 8(m)). The time history of relative dis-

placement is represented in Figure 8(g)) in which the

horizontal dashed lines indicate the gaps. In the same

Figures, two consecutive impacts, the first one with the

right bumper and the second one with the left bumper,

were highlighted with vertical yellow bands. The yellow

points emphasize the instants of start and end of the

contact phase and the corresponding values of displace-

ment, acceleration and velocity, while the acceleration

peaks are marked with cyan stars.

Moving to the next valley in the PRC (central ver-

tical dashed line in Figure 7, denoted also with a fII

inside a circle), we still observe, in the phase plane, the

presence of two coincident solutions (Figure 8(b)). As in

the previous case, the two solutions are characterized by

several harmonic components (Figure 8(e)) and, in each

forcing cycle, the mass hits each bumper once (Figure

8(k)). In Figures 8(h), 8(k) and 8(n), two consecutive

impacts, the first one with the right bumper and the

second one with the left bumper, were highlighted with

vertical yellow bands. In the same Figures, the yellow

points emphasize the instants of start and end of the

contact phase and the corresponding values of displace-

ment, acceleration and velocity, while the acceleration

peaks are marked with cyan stars.

Moving from the valley to the primary hysteresis,

the solutions corresponding to the forward and back-

ward sweeps are still coincident and, as the frequency

increases, the phase portraits gradually regularize and

take on the appearance of an ellipse.

By focusing the attention on the primary resonance

with right hysteresis (third vertical dashed line in Fig-
ure 7, denoted also with a fIII inside a circle), just be-

fore the downward jump, from Figure 8(c) it can be

observed that, in the phase plane, there are two differ-

ent steady-state solutions:

– Large-amplitude resonant motion associated with

the occurrence of impact (red line);

– Small-amplitude non-resonant motion without im-

pact (blue line).

The two solutions are both periodic with one predomi-

nant harmonic component (Figure 8(f)). Actually, there

would be also an unstable solution, that could not be

obtained experimentally. By focusing the attention on

the large-amplitude motion, it can be observed that, in

each forcing cycle, the mass hits each bumper once. In

Figures 8(i), 8(l) and 8(o), two consecutive impacts, the

first one with the right bumper and the second one with

the left bumper, were highlighted with vertical yellow

bands. In the same Figures, the yellow points emphasize

the instants of start and end of the contact phase and
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Fig. 8 Scenario S3 (B2-G1-A3): Phase portrait: a) f = fI; b) f = fII; c) f = fIII; Fourier spectrum: d) f = fI; e) f = fII;
f) f = fIII; Time history of relative displacement: g) f = fI; h) f = fII; i) f = fIII; Time history of absolute acceleration: j)
f = fI; k) f = fII; l) f = fIII; Time history of relative velocity: m) f = fI; n) f = fII; o) f = fIII.
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the corresponding values of displacement, acceleration

and velocity, while the acceleration peaks are marked

with cyan stars.

Immediately after the downward jump, for greater

values of frequency, there is only one solution, the same

in the forward and in the backward sweep, characterized

by the absence of impact and the corresponding phase

portrait takes on the appearance of an ellipse.

It is worth noting that the considered setup (B2-

G1-A3) is characterized by an accidental geometric dis-

symmetry, which is reflected in the asymmetry of the

phase portraits and of the time histories. This dissym-

metry is due to imperfections in the experimental setup,

related to the gap, which is not perfectly symmetrical

and slightly different from the nominal value. This is

particularly evident in Figures 8(a) and 8(b) and less

visible in Figure 8(c), given the greater penetration of

the mass into the bumpers. Furthermore, from Figure

8, it can be observed that the duration of the contact

time compared to the period T = 1/f of the harmonic

base excitation (width of a single vertical yellow band),

increases going from f = fI to f = fIII.

Fig. 9 Scenario S2 (B2-G2-A2): a) ηa; b) ηd.

Scenario S2 PRCs belonging to this scenario are char-

acterized only by the presence of the primary resonance

with right hysteresis, between the downward and up-

ward jumps. This scenario was experimentally obtained

with different combinations of the investigated param-

eters. For example, the PRCs shown in Figure 9 corre-

spond to the combination B2-G2-A2. In the frequency

range between the two jumps, everything goes as de-

scribed above. Unlike the case examined in the previ-

ous paragraph (scenario S3), here, having increased the

gap, impact does not occur immediately starting from

the smallest frequency value investigated, but in the

range between 0.7 and 2 Hz.

Scenarios S1 In the grazing condition, the mass just

touches the bumpers without deforming them signifi-

cantly. Consequently, the corresponding PRCs are sim-

ilar to those occurring in the free flight condition. The

grazing condition was experimentally observed in few

cases where the combination of the largest gap and the

smallest excitation amplitude occurred (Figure 10, cor-

responding to the combination B2-G4-A1).

Fig. 10 Scenario S1 (B2-G4-A1): a) ηa; b) ηd.

Scenarios S0 As concerns the free flight condition, what

has already been said in Subsection 4.1 applies.
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5 Identification via the Simplified Nonlinear

Model (SNM)

The experimental results were compared with those ob-

tained with a numerical model, as described in Sec-

tion 2, in which a linearization of the behaviors of both

the bumpers and the damper was made, retaining the

other nonlinearities. In particular, the behavior of both

damper and bumpers was modelled with a linear elastic

spring in parallel with a linear viscous dashpot. Con-

sequently, the restoring forces in Equations 1, 2 and 3

assume the expression:

F (t) = Ku(t) (5a)

Fj(t) = Kjuj(t) (j = R,L) (5b)

where K and Kj (j = R, L) are the elastic stiffness of

the damper and the bumpers respectively. In the case of

two equal bumpers symmetrically positioned on the two

sides of the mass, it is KR = KL. By virtue of the lin-

earization made, this model was called Simplified Non-

linear Model (SNM). It is worth noting that the other

sources of nonlinearities, namely the gap, the unilateral

constrains and the impact that induces abrupt changes

of both stiffness and damping, are taken into account.

Fig. 11 Comparison between experimental and numerical
PRCs (Scenario S3, combination B2-G1-A3): a) ηa; b) ηd.

The authors are aware of the limitations of the lin-

ear visco-elastic model, particularly when used to model

the contact; however, they consider this model satisfac-

tory for their purposes. To compare the experimental

results with those obtained with the SNM, it was nec-

essary to reduce the nonlinear constitutive law of the

damper [54,61] to a linear elastic one. This was made

considering an equivalent stiffness K, estimated in free

flight resonance condition, for each value of table accel-

eration A.

Once the parameters of the numerical model were

identified, the scenarios described above were repro-

duced numerically and a comparison with the exper-

imental data was made in terms of PRCs and phase

portraits, as shown in Figures 11, 12 and 13. In partic-

ular, Figures 11 and 12 show the PRCs and the phase

portraits corresponding to the S3 scenario for the B2-

G1-A3 combination; and Figure 13 shows the PRCs

of the S2 scenario for the B2-G2-A2 combination. In

these Figures, the experimental results were represented

with markers in the PRCs (Figures 11 and 13) and

dotted lines in the phase portraits (Figure 12), while

the numerical results were represented with solid and

dashed black lines. The identified parameters of the

model were: KR = KL = 510 kN/m, CR = CL = 0.9

kN s/m for the bumper B2 and, with regards to the

damper, K = 26.8 kN/m, C = 1.1 kN s/m for the sce-

nario S3 and K = 31.9 kN/m, C = 1.1 kN s/m for the

scenario S2.

It can be observed that, although the SNM does not

include the nonlinearities associated with the behavior

of both the damper and the bumpers, there is a good

agreement between experimental and numerical results

both in terms of PRCs (Figures 11 and 13) and in the

phase portraits (Figure 12). The model is able to repro-

duce both qualitatively and quantitatively the primary

resonance and the downward jump, whereas it is not

able to precisely capture other phenomena such as the

frequency of the upward jump. This is due to the differ-

ence between the experimental (nonlinear) and numer-

ical (linear) PRCs in free flight condition which causes

that, for a given value of the gap, in the SNM, the

upward jump occurs for lower values of the frequency.

Furthermore, the position and amplitude of the sec-

ondary resonance was reproduced in a sufficiently ac-

curate manner. The numerical model also highlighted

the presence of internal loops in the phase portrait, cor-

responding to the secondary resonance (f = fI, black

cycle in Figure 12(a)) and something similar to small

loops can also be recognized in the experimental cycles.

Based on these considerations, the SNM appears to

be adequate to simulate the behavior of the system and
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Fig. 12 Comparison between experimental and numerical phase portraits (Scenario S3, combination B2-G1-A3): a) f = fI;
b) f = fII; c) f = fIII.

Fig. 13 Comparison between experimental and numerical
PRCs (Scenario S2, combination B2-G2-A2): a) ηa; b) ηd.

can give quite satisfying results in good agreement with

the experimental outcomes.

6 Further numerical scenarios

From the analysis of the experimental results, it was ob-

served that the scenarios become more and more com-

plex decreasing the total gap G, increasing the peak

table acceleration A and the bumper’s stiffness B (Fig-

Fig. 14 Investigated cases and scenarios.

ure 14). In this Figure, each plane corresponds to a

value of peak table acceleration A, which grows moving

from the lower to the higher plane. In each plane, every

single square of the grid correspond to a pair B-G and

the corresponding color denotes the associated scenario

(S1: green, S2: blue, S3: red). It can be observed that,

for the lower value of A (A1), only the scenarios S1 and

S2 were observed, the former only for the pair G4-A1;

for values of G greater than G4, free flight condition

occurs. Increasing A, only the scenarios S2 and S3 were

observed and the transition from S2 to S3 occurs de-

creasing the total gap G and increasing the stiffness of

the bumper B; furthermore, the extension of the red

region, associated with the scenario S3, increases. The

grazing condition was not observed for these values of

A, i.e. A2 and A3, because it occurs for values of G∞
greater than G4.

Based on these considerations, using the SNM, which

has proven to be able to reproduce satisfactorily the ex-

perimental results, further numerical simulations were

carried out to investigate what happens for combina-
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tions of the parameters not accomplished in the exper-

imental tests.

Having available for the moment the same bumpers

Bk (k = 1, 2, 3, 4) used in the experimental campaign,

new combinations can be obtained varying the gap am-

plitude G and the peak table acceleration A. In order

to investigate the existence of more complex scenarios,

one choice may be to keep the peak table acceleration

A fixed and to reduce the total gap G.

In Figure 15 the numerical PRCs corresponding to

the combination B3-A3 with a total gap amplitude G =

10 mm are represented. It can be observed that, com-

pared to the previously defined scenario S3, in this case

in the low frequency range different types of secondary

resonances arise. In particular, for f < 0.9Hz, several

secondary resonances with left hysteresis are observed

(see the area enclosed by a dotted grey circle). On the

other hand, in the neighbourhood of 1 Hz (rectangular

zoomed area), a secondary non-regular resonance with-

out hysteresis, is noticed .

Fig. 15 Numerical PRCs (B3-A3, G = 10 mm): a) ηa; b)
ηd.

By focusing the attention on one of the secondary

resonances with left hysteresis (first vertical dashed line

on the left in Figure 15, denoted also with a fI inside a

Fig. 16 Numerical results (B3-A3, G = 10 mm). Phase por-
trait: a) f = fI; b) f = fII; Fourier spectrum: c) f = fI; d)
f = fII; Time history of relative displacement: e) f = fI; f)
f = fII; Time history of absolute acceleration: g) f = fI; h)
f = fII; Time history of relative velocity: i) f = fI; j) f = fII.
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circle), it can be observed that, there are two different

steady-state solutions (Figure 16(a)):

– Large-amplitude motion with impact (blue line);

– Small-amplitude motion with impact (red line).

Each of the two limit cycles in Figure 16(a) is anti-

symmetric with respect to the axes. Compared to the

primary resonance (see Figure 8(c)), here the large-

amplitude motion is associated with the backward sweep.

Furthermore, the two solutions are both periodic multi-

frequency (Figure 16(c)) and are characterized by the

occurrence of impact, as it can be seen also from Fig-

ures 16(e), 16(g), 16(i). In particular, in each forcing

cycle, the mass hits each bumper twice in the forward

sweep (vertical light red bands) and once in the back-

ward sweep (vertical light blue bands). The correspond-

ing acceleration peaks are marked with red (forward

sweep) and blue (backward sweep) stars respectively.

The number of impacts can also be deduced from the

phase portraits (Figure 16(a)). Both the limit cycles are

characterized by the presence of internal loops. In the

backward sweep, these loop do not touch the vertical

dashed lines that represent the position of the obstacles,

whereas in the forward sweep, the loop cross them. As

in the primary hysteresis, also here there would be also

an unstable solution, that could not be obtained exper-

imentally.

Similar considerations apply to the other secondary

resonances with left hysteresis that occur for smaller

frequency values. What changes, in addition to the am-

plitude of the response, is the number and the position

of the internal loops in the phase portraits and, thus,

the number of impacts. In particular, decreasing the

frequency, the number of impacts per forcing cycle in-

creases, both in the forward and in the backward sweep,

with a greater number of impacts always on the forward

sweep.

As concerns the secondary non-regular resonance

without hysteresis (second vertical dashed line in Figure

15, denoted also with a fII inside a circle), it can be ob-

served that, in this frequency range, forward and back-

ward PRCs overlap, therefore there is no hysteresis. In

the central part of this resonance, characterized by a

more or less constant excursion of both absolute acceler-

ation and relative displacement, a pair of quasi-periodic

solutions is observed (Figures 16(b) and 16(d)). These

two limit cycles have the same excursion but are char-

acterized by an eccentricity, calculated as the half-sum

of maximum and minimum values at steady state of

each sub-frequency range, equal in absolute value but

with opposite sign. Consequently, the two solutions are

not antisymmetric in themselves, but the antisymme-

try is achieved through their envelope, as can be seen

from Figure 16(b), in which the envelope is highlighted

in light grey. Each cycle has an internal loop which, as

time goes by, approaches, crosses and then moves away

from one of the left vertical dashed lines representing

the position of the obstacles. In particular, the inter-

nal loop of the red cycle crosses only the right vertical

line (right bumper), while the internal loop of the blue

cycle crosses only the left vertical line (left bumper).

Given the quasi-periodicity of the response, it is not

possible to reach a steady-state condition. This results,

for each of the two solutions that make up the pair, in

a different number of impacts, in each forcing cycle, to

the right and left as time goes on (Figures 16(f), 16(h),

16(j)). In this frequency range, starting from appropri-

ate initial conditions, it is possible to observe, besides

the pair of quasi-periodic solutions, also a periodic so-

lution, represented with a dashed green curve in Figure

16(b). Compared to the two quasi-periodic solutions,

this solution is antisymmetric in itself and is charac-

terized by a smaller excursion and zero eccentricity. In

the PRCs (Figure 15) the values of excursion associated

with these periodic solutions are placed on the dashed

green curve, which represents the ideal course of the

PRC that would have occurred in the absence of the

secondary non-regular resonance.

After passing the range characterized by almost con-

stant excursion, along the subsequent descending branch,

the presence of a pair of solutions, with an antisym-

metric envelope, is still observed and both the quasi-

periodicity and the internal loops gradually disappear

increasing the frequency. In the next ascending branch,

before the primary hysteresis, we return to having a

single periodic solution.

In Figure 17 the numerical PRCs corresponding to

the combination B3-A3 with the bumpers initially at-

tached to the mass (G = 0 mm) are represented. It can

be observed that the situation returns to be smooth, the

forward and backward curves overlap without jumps,

hysteresis or secondary resonances and the primary res-

onance has moved to higher frequencies (about 5.4 Hz).

For each frequency value, there is always a single

periodic mono-frequency solution (Figures 18(a) and

18(b), the same on both the forward and backward

sweep, and the mass, during its motion, would seem to

be always in a contact condition, alternatively with a

bumper or the other (Figures 18(c), 18(d) and 18(e)). In

reality, there is also in this case a phase of free flight but

it is very short. This is related to the small value of the

relaxation time of the bumper, which causes the detach-

ment between the mass and the bumper to take place

when the latter has recovered practically all its defor-

mation and immediately afterwards the mass impacts

the other bumper, which in the meantime has already

recovered its deformation. This can be seen better by
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Fig. 17 Numerical PRCs (B3-A3, G = 0 mm): a) ηa; b) ηd.

looking at the zoomed areas in Figure 18(c), in which,

in addition to the relative displacement of the mass,

also the clearance functions GR(t) (green curve) and

GL(t) (orange curve) are represented. Focusing on the

zoomed area at the top of the Figure, it can be observed

that, after the detachment between the mass and the

right bumper, highlighted with a green dot, the right

bumper recovers its deformation (green curve) while the

mass goes towards the left bumper and the subsequent

contact is highlighted with an orange dot.

Repeating the numerical analysis, conducted for the

pair B3-A3, for other values of the total gap G and

representing all the corresponding PRCs in the same

graph, Figure 19 is obtained. The two sub-figures are

the numerical equivalent of the experimental ones (see

the sub-figures of Figures 5 and 6 corresponding to the

pair B3-A3), in which the range of investigated gap val-

ues has been expanded. Consequently, using the SNM it

was possible to integrate the experimental results and

fill the void left by experimentation in order to have a

more complete description of the PRCs evolution with

the total gap G.

In Figure 19, solid line represent the forward sweep,

dashed lines the backward sweep, the vertical arrows

indicate the two jumps and each color corresponds to

a scenario. Compared to the scenarios observed exper-

Fig. 18 Numerical results (B3-A3, G = 0 mm), resonance
condition: a) Phase portrait; b) Fourier spectrum; c) Time
history of relative displacement; d) Time history of absolute
acceleration; e) Time history of relative velocity.
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imentally and represented respectively with the colors

green (S0 and S1), blue (S2) and red (S3), magenta was

used to highlight the PRCs similar to those shown in

Figure 15 (the corresponding scenario will be denoted

as scenario S4) and light blue for the PRCs (similar to

those shown in Figure 17) corresponding to a zero ini-

tial gap (the corresponding scenario will be denoted as

scenario S5). It is worth noting that, using the Simpli-

fied Nonlinear Model (SNM), PRCs corresponding to

the grazing condition (scenario S1) coincide with those

relating to free flight (scenario S0), which are the typical

dynamic amplification curves of a visco-elastic system,

without jumps and softening. From Figure 19, it can be

observed that, the trends experimentally observed (see

Subsection 4.2) found confirmation in the numerical re-

sults.

Fig. 19 Numerical PRCs for the pair B3-A3 and different
values of the total gap G: a) ηa; b) ηd.

In Figure 20 numerical PRCs corresponding to the

pair G3-A1 and increasing values of bumper’s stiffness

B are represented in the same graph. It can be observed

that, for the selected pair G-A, secondary resonances

do not occur even for high values of bumper’s stiffness.

Most of the PRCs belong to the scenario S2 (color blue),

except for very small values of stiffness. In these cases

(in the following denoted as scenario S6), forward and

backward PRCs (in Figure 20 represented with orange

curves) are slightly bent to the right and overlap with-

out jumps and hysteresis; in the frequency range asso-

ciated with the occurrence of the impact, a single pe-

riodic mono-frequency solution is observed. The green

PRCs correspond to the free flight condition (absence

of bumpers). Also in this case, the trends experimen-

tally observed (see Subsection 4.2) found confirmation

in the numerical results.

Fig. 20 Numerical PRCs for the pair G3-A1 and different
values of the bumper’s stiffness B: a) ηa; b) ηd.

Based on the numerical results obtained with the

SNM which, despite its relative simplicity, has proven

to be able to reproduce the experimental scenarios sat-

isfactorily, one of the future developments of this study

will be to understand if the further numerical scenarios

can be obtained also experimentally.

7 Interpretation of the results in terms of

dimensionless parameters

The SDOF system response can be described also in

terms of the following dimensionless parameters:

– λj = Kj/K (j = R, L): ratio between the stiffness of

the j-th bumper and that of the damper;

– τrj = ωCj/Kj (j = R, L): dimensionless relaxation

time of the j-th bumper;

– δ0j = G0j/umax (j = R, L): dimensionless initial

gap, that is the initial distance between the mass
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Table 1 Dimensionless parameters

δ λ

G1 G2 G3 G4 G∞ B1 B2 B3 B4

A1 0.47 0.62 0.78 0.93 ≥ 1.00 2.9 15.0 20.0 67.8
A2 0.30 0.40 0.49 0.59 ≥ 1.00 3.5 17.8 23.7 80.1
A3 0.22 0.29 0.36 0.43 ≥ 1.00 3.8 19.4 25.9 87.5

and the j-th bumper normalized with respect to the

maximum displacement of the SDOF system (mass

M and damper D, Figure 1) in the free flight res-

onance condition. Based on this normalization, a

value δ0j = 0 indicates that the j-th bumper is ini-

tially attached to the mass; if δ0j takes values be-

tween 0 and 1, the mass beats and deforms the j-th

bumper; a value δ0j = 1 indicates that the mass can

only graze the j-th bumper without deforming it;

whereas the mass will be in the free flight condition

for δ0j > 1;

– ξ: damping factor of the SDOF system.

For symmetrically positioned equal bumpers it is

λR = λL = λ, τrR = τrL = τr and δ0R = δ0L. Con-

sistently with what has been done in physical terms, in

the following the dimensionless total gap, defined as the

sum of δ0R and δ0L, was denoted simply with δ, without

subscript.

The estimation of the values of the dimensionless

parameters, corresponding to each experimentally in-

vestigated combination of bumper stiffness B, total gap

amplitude G and peak table acceleration A, was made

assuming a constant value of the damping factor ξ equal

to 0.15.

In the numerical investigations carried out using the

SNM, we considered, for each value of peak table accel-

eration A, an equivalent stiffness K of the damper, eval-

uated in free flight resonance condition. Consequently,

to each bumper B correspond three values of λ, increas-

ing with A (Table 1). For the same peak table acceler-

ation A, λ increases with the stiffness of the bumper B.

It can be observed that λ, so esteemed, in our case is al-

ways greater than 1 and takes on values between about

3 (combination of the most deformable bumper with the

smallest table acceleration) and about 90 (combination

of the stiffest bumper with the greatest table accelera-

tion). Furthermore, for the types of bumpers considered

in the experimental laboratory campaign the relaxation

time τr does not vary significantly and consequently it

was assumed constant and equal to 0.01.

As concerns the dimensionless gap δ, since the max-

imum displacement of the SDOF system umax depends

on the peak table acceleration A, twelve values of δ

were considered, each one corresponding to a combina-

tion of A and G (Table 1). The dimensionless total gap

Fig. 21 Investigated cases in terms of dimensionless param-
eters (ξ = 0.15, τr = 0.01).

increases with the total gap amplitude G, for a given

value of A, and decreases increasing A, for a given value

of G. It can be observed that δ in our case takes on val-

ues greater than 0.22.

In Figure 21 the cases investigated experimentally

are represented in terms of dimensionless parameters in

the λ−δ plane for fixed values of ξ and τr. As in Figure

14, each color corresponds to a scenario; in addition to

the scenarios experimentally observed (S0: black hor-

izontal line δ = 1 and vertical line λ = 0, the latter

not shown, S1: green region, S2: blue region, S3: red

region), also those highlighted by the numerical model

(S4: magenta region, S5: light blue horizontal line δ = 0,

S6: orange region) are represented. Each symbol corre-

sponds to a bumper (B1: circle, B2: square, B3: triangle,

B4: diamond). To each bumper correspond three values

of stiffness ratio λ (three vertical dashed lines), one for

each value of table acceleration A. For each value of λ

(combination B-A) there are four values of δ, one for

each value of total gap G.

Figure 21 can be seen as the translation in dimen-

sionless terms of Figure 14. The transition to the di-

mensionless parameters therefore allowed to synthesize

in a single graph the results of both the experimental

and numerical investigations. It is worth noting that,

while in physical terms the gap corresponding to graz-

ing G∞ depends on the table acceleration, in dimen-
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sionless terms this condition translates into a single

value δ = 1.

It can be noted that the values of λ associated with

the two bumpers B2 and B3 are close to each other. This

is due to the fact that these two bumpers have similar

stiffness. It can be observed that most of the experi-

mental tests are associated with the scenario S2 (inter-

mediate values of δ), four tests (highest values of δ) can

be associated with the scenario S1 and the remainder

with the scenario S3 (smallest values of δ). The experi-

mental investigation did not cover a portion of the λ−δ
plane. In particular, the vertical band characterized by

λ < 2 and the horizontal band characterized by δ < 0.2

were not explored. Some indications on the scenarios

that could arise in these regions have been provided by

the SNM (scenarios S4, S5, S6), which has proven to be

able to reproduce the experimental results satisfacto-

rily. The unexplored area (light grey shaded area) will

be investigated with more detail in future developments

of this work, because it is not said that, for example,

within the magenta region (scenario S4), there is only

the behavior shown in Figure 15.

Once the dimensionless parameters were introduced,

Figures 5 and 6, represented and described in Subsec-

tion 4.2 in terms of physical parameters (B, G, A), can

be reread also in terms of dimensionless parameters. In

particular, each graph of Figures 5 and 6, associated

with a pair B-A, corresponds to a specific value of λki

(the subscript k is associated with the bumper Bk, k

= 1, 2, 3, 4 and the subscript i is associated with the

acceleration Ai, i = 1, 2, 3) and each curve of the graph

corresponds to a specific value of dimensionless gap δji
(the subscript j is associated with the total gap Gj, j =

1, 2, 3, 4 and the subscript i is associated with the accel-

eration Ai, i = 1, 2, 3). Thus, each sub-figure of Figures

5 and 6 corresponds to a section λ = constant in Fig-

ure 21. Figure 19 coincides with one of these section,

and it was highlighted with a vertical dashed black line

λ = 25.9. Along each section λ = constant, if A is kept

fixed and G is reduced, this means reducing δ and thus

moving downward. Also Figure 20 can be synthetically

represented in Figure 21. It corresponds to the section

δ = 0.78, highlighted with an horizontal dashed black

line. In fact, each section δ = constant corresponds to

a specific pair G-A along which to increase B means

increase λ and therefore move to the right.

The introduction of dimensionless parameters hal-

lowed to generalize the obtained results, to reduce the

number of parameters that influence the response of

the system and to highlight how what matters are, not

the values assumed by the individual physical parame-

ters, but rather their relationships. This causes that the

same result can be obtained with different combinations

of the involved physical parameters.

8 Conclusions and future developments

In this paper, some of the scenarios which can occur

in the experimental nonlinear nonsmooth response of a

vibro-impact SDOF system, symmetrically constrained

by deformable and dissipative bumpers under harmonic

excitation (forward and backward sine sweep signal),

were identified and described. The scenarios were clas-

sified by observing the characteristics of forward and

backward Pseudo Resonance Curves (PRCs) of normal-

ized excursion of absolute acceleration and relative dis-

placement, obtained varying selected parameters, namely

peak table acceleration A, amplitude of the total gap

G and bumper’s stiffness B.

In free flight condition, that is in the absence of

bumpers, the softening behavior of the damper causes

the PRCs to be bent to the left, with a resonance fre-

quency gradually decreasing as the table acceleration

increases, whereas the amplitude of the response in-

creases. Compared to this reference situation, in the

presence of the bumpers, the hardening caused by the

occurrence of impact bend the PRCs to the right, with

the consequent appearance of jumps and hysteresis. Fur-

thermore, the presence of the bumpers produces, com-

pared to the free flight condition, on the one hand an

increase in acceleration and, in a dual manner, a de-

crease in displacement.

It was observed that, the variation of the investi-

gated parameters (A, G, B) influences the PRCs. In

particular, the jump frequencies increase, both in the

forward and in the backward sweeps (the latter to a

lesser extent), decreasing the total gap amplitude G

and increasing the peak table acceleration A and the

stiffness of the bumpers B. As concerns the maximum

values of normalized excursion of absolute acceleration,

both in the forward and in the backward resonance con-

dition, they increase with the acceleration A and the

stiffness of the bumpers B, whereas they show, depend-

ing on the pair B-A, a partial or complete bell-shaped

trend, decreasing the total gap amplitude G. In a dual

manner, the maximum values of normalized excursion

of relative displacement decrease decreasing G and in-

creasing the peak table acceleration A and the stiffness

of the bumpers B, both in the forward and in the back-

ward resonance condition. In addition, for the higher

values of acceleration (A2 and A3) and in correspon-

dence with the smaller gaps (G1 and G2), the appear-

ance of secondary resonances, of gradually increasing

amplitude as the bumper’s stiffness B increases, in the

low frequency range was observed.
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Based on the observation of the characteristics of

the experimental PRCs, four scenarios were introduced,

namely scenario S0 corresponding to the free flight con-

dition; scenario S1 corresponding to the grazing condi-

tion; scenario S2 with PRCs characterized by the pres-

ence of only the primary resonance with right hystere-

sis; scenario S3 with PRCs with both the primary res-

onance with right hysteresis and the secondary reso-

nance. These scenarios were investigated in more de-

tail analysing phase portraits, Fourier spectra and time

histories of relative displacement, absolute acceleration

and relative velocity of the mass in steady-state condi-

tion.

The experimental investigation was followed by a

numerical analysis conducted using a Simplified Non-

linear Model (SNM), that is a numerical model in which

both the bumpers and the damper were modelled with

a Kelvin-Voigt model, retaining the other nonlineari-

ties which characterize the problem, namely the exis-

tence of clearances, the unilaterality of the contact and

the occurrence of impact, which causes abrupt changes

of stiffness and damping at the contact time. The use

of a linear visco-elastic modeling of both damper and

bumpers, despite its limitations, was satisfactory for

the purposes of this study. Once the model parame-

ters have been identified, it was possible to numerically

reproduce, in a sufficiently accurate manner, the sce-

narios observed experimentally. It was observed that

the SNM, despite its relative simplicity, can give quite

satisfying results in good agreement with the experi-

mental outcomes. It is able to reproduce both quali-

tatively and quantitatively the primary resonance and

the downward jump, whereas it is not able to precisely

capture other phenomena such as the frequency of the

upward jump. A good agreement between experimen-

tal and numerical results was observed also in the phase

portraits.

For this reason the SNM was used to integrate the

experimental results and fill the void left by experi-

mentation. In particular, further numerical investiga-

tions allowed to highlight the existence of more com-

plex response scenarios (characterized by the existence

of secondary regular resonances without hysteresis, sec-

ondary regular resonances with left hysteresis, secondary

non-regular resonances without hysteresis, these last

ones exhibiting pairs of quasi-periodic solutions of large

amplitude and -starting by appropriate initial conditions-

also periodic solutions of small amplitude), that could

be obtained, for example, considering values of the total

gap G smaller than those considered in the experimen-

tal laboratory campaign.

Finally, suitable dimensionless parameters, namely

stiffness ratio, dimensionless relaxation time, dimen-

sionless initial gap and damping factor of the SDOF

system were introduced and the experimental results

were framed in terms of these parameters. The tran-

sition to the dimensionless parameters allowed to re-

duce the number of parameters that influence the re-

sponse of the system and, consequently, to synthesize

in a single graph the results of both the experimen-

tal and numerical investigations, and to highlight how

what matters are, not the values assumed by the in-

dividual involved physical parameters, but rather their

relationships. This causes that the same scenario can

be obtained with different combinations of the involved

physical parameters.

Based on the numerical results, as a first future de-

velopment of this work, there is the intention to in-

vestigate the possibility to experimentally regain the

more complex scenarios obtained with the SNM. Fur-

thermore, to fully capture, qualitatively and quantita-

tively, the main aspects of the response of the system,

also a more refined nonlinear numerical model, that in-

cludes all the nonlinearities will be considered in future

analysis.

Conflict of interest

The authors declare that they have no conflict of inter-

est.

References

1. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Map-
ping and Applications. Lecture Notes in Applied and
Computational Mechanics 43, Springer-Verlag, Heidelberg
(2009)

2. Liu, Y., Wiercigroch, M., Pavlovskaia, E., Peng, Z.K.: For-
ward and backward motion control of a vibro-impact cap-
sule system. Int. J. Nonlinear Mech. 70, 30–46 (2015)

3. Liu, Y., Pavlovskaia, E., Wiercigroch, M.: Experimental
verification of the vibro-impact capsule model. Nonlinear
Dyn. 83(1-2), 1029-1041 (2016)

4. Yan, Y., Liu, Y., Liao, M.: A comparative study of the
vibro-impact capsule systems with one-sided and two-sided
constraints. Nonlinear Dyn. 89(2), 1063-1087 (2017)

5. Gu, X.D., Deng, Z. CH.: Dynamical analysis of vibro-
impact capsule system with Hertzian contact model and
random perturbation excitations. Nonlinear Dyn. 92(4),
1781-1789 (2018)

6. Yan, Y., Liu, Y., Manfredi, L., Prasad, S.: Modelling of
a vibro-impact self-propelled capsule in the small intestine,
Nonlinear Dyn. 96(1), 123-144 (2019)

7. Divenyi, S., Savi, M.A., Wiercigroch, M., Pavlovskaia, E.:
Drill-string vibration analysis using non-smooth dynamics
approach, Nonlinear Dyn. 70(2), 1017-1035 (2012)

8. Liu X., Vlajic N., Long X., Meng G., Balachandran B..
Nonlinear motions of a flexible rotor with a drill bit: stick-
slip and delay effects. Nonlinear Dyn. 72(1-2), 61-77 (2013)



Scenarios in the experimental response of a vibro-impact single-degree-of-freedom system and numerical simulations 23

9. Liu X., Vlajic N., Long X., Meng G., Balachandran B.:
Coupled axial-torsional dynamics in rotary drilling with
state-dependent delay: stability and control. Nonlinear
Dyn. 78(3), 1891-1906 (2014)
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