7,995 research outputs found

    Bioclimatology, structure, and conservation perspectives of Quercus pyrenaica, Acer opalus subsp. Granatensis, and Corylus avellana deciduous forests on Mediterranean bioclimate in the South-Central part of the Iberian Peninsula

    Get PDF
    The plant variability in the southern Iberian Peninsula consists of around 3500 different taxa due to its high bioclimatic, geographic, and geological diversity. The deciduous forests in the southern Iberian Peninsula are located in regions with topographies and specific bioclimatic conditions that allow for the survival of taxa that are typical of cooler and wetter bioclimatic regions and therefore represent the relict evidence of colder and more humid paleoclimatic conditions. The floristic composition of 421 samples of deciduous forests in the south-central part of the Iberian Peninsula were analyzed. The ecological importance index (IVI) was calculated, where the most important tree species were Quercuspyrenaica, Aceropalus subsp. Granatensis, and Corylusavellana. These species are uncommon in the south-central part of the Iberian Peninsula, forming forests of little extension. An analysis of the vertical distribution of the species (stratum) shows that the majority of the species of stratum 3 (hemicriptophics, camephytes, geophites, and nanophanerophytes) are characteristic of deciduous forests, and their presence is positively correlated with high values of bioclimatic variables related to humidity and presence of water in the soil (nemoral environments), while they are negatively correlated with high values of bioclimatic variables related to high temperatures, evapotranspiration, and aridity. This work demonstrates that several characteristic deciduous forest taxa are more vulnerable to disappearance due to the loss of their nemoral conditions caused by gaps in the tree or shrub canopy. These gaps lead to an increase in evapotranspiration, excess insolation, and a consequent loss of water and humidity in the microclimatic conditions.info:eu-repo/semantics/publishedVersio

    Graph Theory Data for Topological Quantum Chemistry

    Full text link
    Topological phases of noninteracting particles are distinguished by global properties of their band structure and eigenfunctions in momentum space. On the other hand, group theory as conventionally applied to solid-state physics focuses only on properties which are local (at high symmetry points, lines, and planes) in the Brillouin zone. To bridge this gap, we have previously [B. Bradlyn et al., Nature 547, 298--305 (2017)] mapped the problem of constructing global band structures out of local data to a graph construction problem. In this paper, we provide the explicit data and formulate the necessary algorithms to produce all topologically distinct graphs. Furthermore, we show how to apply these algorithms to certain "elementary" band structures highlighted in the aforementioned reference, and so identified and tabulated all orbital types and lattices that can give rise to topologically disconnected band structures. Finally, we show how to use the newly developed BANDREP program on the Bilbao Crystallographic Server to access the results of our computation.Comment: v1: 29 Pages, 13 Figures. Explains how to access the data presented in arXiv:1703.02050 v2: Accepted version. References updated, figures improve

    Building Blocks of Topological Quantum Chemistry: Elementary Band Representations

    Full text link
    The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time-reversal in his theory of "elementary" band representations. In Nature 547, 298-305 (2017), we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here, we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time-reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wavefunctions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, which we introduced in Nature 547, 298-305 (2017), we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.Comment: 15+9 pages, 4 figures; v2: minor corrections; v3: updated references (published version

    Band Connectivity for Topological Quantum Chemistry: Band Structures As A Graph Theory Problem

    Full text link
    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature 547, 298 (2017)], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local "k-dot-p" band structures across the Brillouin zone in terms of graph theory. In the current manuscript we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph-theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.Comment: 19 pages. Companion paper to arXiv:1703.02050 and arXiv:1706.08529 v2: Accepted version, minor typos corrected and references added. Now 19+epsilon page

    Topological quantum chemistry

    Full text link
    The past decade's apparent success in predicting and experimentally discovering distinct classes of topological insulators (TIs) and semimetals masks a fundamental shortcoming: out of 200,000 stoichiometric compounds extant in material databases, only several hundred of them are topologically nontrivial. Are TIs that esoteric, or does this reflect a fundamental problem with the current piecemeal approach to finding them? To address this, we propose a new and complete electronic band theory that highlights the link between topology and local chemical bonding, and combines this with the conventional band theory of electrons. Topological Quantum Chemistry is a description of the universal global properties of all possible band structures and materials, comprised of a graph theoretical description of momentum space and a dual group theoretical description in real space. We classify the possible band structures for all 230 crystal symmetry groups that arise from local atomic orbitals, and show which are topologically nontrivial. We show how our topological band theory sheds new light on known TIs, and demonstrate the power of our method to predict a plethora of new TIs.Comment: v1: 8 pages + 40 pages supplemenetary material. Previously submitted v2: ~ Published version. 11 pages + 79 pages supplementary material. Descriptions of the data used in this paper can be found in arXiv:1706.08529 and arXiv:1706.09272. All data can be accessed via the Bilbao Crystallographic Server (http://cryst.ehu.es). Two additional papers elaborating on the general theory currently in pre

    Aplicação da termometria por infravermelho a irrigação do feijoeiro (Phaseolus vulgaris L.): parâmetros fisiológicos.

    Get PDF
    Avaliou-se no campo a resposta de plantas de feijao (Phaseolus vulgaris L.) cv Carioca submetidas a quatro regimes de irrigacao, visando adotar um indicador fisiologico que permitisse determinar o momento de se efetuar a irrigacao, tanto na fase vegetativa quanto na reprodutiva. Registraram-se significativas relacoes entre os decrescimos do potencial hidrico foliar e os acrescimos na resistencia estomatica ao longo do dia, e desta com os aumentos na temperatura do dossel, que foram maiores nas plantas sob deficiencia hidrica mais acentuada. Os maiores diferenciais de temperatura do dossel foram observados entre o controle irrigado e o tratamento mais seco. Tambem foram registrados para cada tratamento, diferenciais de temperatura do dossel em relacao a temperatura do ar, obtendo-se diferenciais positivos apenas nas plantas sob menor frequencia de irrigacao na condicao maxima de tensao de agua no solo. Os resultados indicam que o diferencial de temperatura do dossel entre uma parcela de plantas bem irrigadas e outra submetida ao estresse hidrico foi o parametro fisiologico mais apropriado para monitorar a irrigacao

    Patient Experience Drivers of Overall Satisfaction With Care in Cancer Patients: Evidence From Responders to the English Cancer Patient Experience Survey

    Get PDF
    Background: Surveys collecting patient experience data often contain a large number of items covering a wide range of experiences. Knowing which areas to prioritize for improvements efforts can be difficult. Objective: To examine which aspects of care experience are the key drivers of overall satisfaction with cancer care. Methods: Secondary analysis of the National Cancer Patient Experience Survey. Logistic regression was used to examine the relationship between overall satisfaction and 10 core questions covering aspects of experience applicable to all patients. Supplementary analyses examined a further 16 questions applying only to patients in certain groups or on specific treatment pathways. Results: Of 68 340 included patients, 58 697 (86%) rated overall satisfaction highly (8 or more out of 10). The strongest predictors of overall satisfaction across all models were responses to 2 questions on experience of care administration and care coordination (odds ratio [OR] = 2.11, 95% confidence interval [95% CI = 2.05-2.17, P < .0001; OR = 2.03, 95% CI = 1.97-2.09, P < .0001, respectively, per 1 standard deviation change). Conclusion: Focusing improvement efforts on care administration and coordination has potential to improve overall satisfaction with oncological care across diverse patient groups/care pathways

    Electroexcitation of the Roper resonance from CLAS data

    Full text link
    The helicity amplitudes of the electroexcitation of the Roper resonance on proton are extracted at 1.7 < Q2 < 4.2 GeV2 from recent high precision JLab-CLAS cross sections data and longitudinally polarized beam asymmetry for pi+ electroproduction on protons. The analysis is made using two approaches, dispersion relations and unitary isobar model, which give consistent results. It is found that the transverse helicity amplitude for the gamma* p --> P11(1440) transition, which is large and negative at Q2=0, becomes large and positive at Q2 ~ 2 GeV2, and then drops slowly with Q2. Longitudinal helicity amplitude, that was previously found from CLAS data as large and positive at Q2=0.4,0.65 GeV2, drops with Q2. These results rule out the presentation of P11(1440) as a 3qG hybrid state, and provide strong evidence in favor of this resonance as a first radial excitation of the 3q ground state.Comment: 3 pages, 2 figures, Talk on the Workshop on "The Physics of Excited Nucleons", Bonn, Germany, October 200
    corecore