13,070 research outputs found

    A cryptic promoter in potato virus X vector interrupted plasmid construction

    Get PDF
    BACKGROUND: Potato virus X has been developed into an expression vector for plants. It is widely used to express foreign genes. In molecular manipulation, the foreign genes need to be sub-cloned into the vector. The constructed plasmid needs to be amplified. Usually, during amplification stage, the foreign genes are not expressed. However, if the foreign gene is expressed, the construction work could be interrupted. Two different viral genes were sub-cloned into the vector, but only one foreign gene was successfully sub-cloned. The other foreign gene, canine parvovirus type 2 (CPV-2) VP1 could not be sub-cloned into the vector and amplified without mutation (frame shift mutation). RESULTS: A cryptic promoter in the PVX vector was discovered with RT-PCR. The promoter activity was studied with Northern blots and Real-time RT-PCR. CONCLUSION: It is important to recognize the homologous promoter sequences in the vector when a virus is developed as an expression vector. During the plasmid amplification stage, an unexpected expression of the CPV-2 VP1 gene (not in the target plants, but in E. coli) can interrupt the downstream work

    Conformations Of A Model Protein Revealed By An Aggregating Cuᴵᴵ Porphyrin: Sensing The Difference

    Get PDF
    Aggregated t-CuP binds to poly-L-glutamate through supramolecular interactions, revealing itself to be an extremely sensitive probe for the major conformations of the polymeric scaffold

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    Local and Global Casimir Energies for a Semitransparent Cylindrical Shell

    Get PDF
    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ\lambda\delta-function potential in a 3+1 dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak-coupling,through O(λ2)\mathcal{O}(\lambda^2), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the delta-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ3)\mathcal{O}(\lambda^3), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy, and does {\em not} reflect divergences in the local energy density as the surface is approached.Comment: 28 pages, REVTeX, no figures. Appendix added on perturbative divergence

    Mechanism For Copper(II)-Mediated Disaggregation Of A Porphyrin J-Aggregate

    Get PDF
    J-aggregates of anionic meso-tetrakis(4-sulfonatophenyl)porphyrin form at intermediate pH (2.3–3.1) in the presence of NiSO₄ or ZnSO₄ (ionic strength, I.S. = 3.2 M). These aggregates convert to monomeric porphyrin units via metallation with copper(II) ions. The kinetics for the disassembly process, as monitored by UV/vis spectroscopy, exhibits zeroth-order behavior. The observed zeroth-order rate constants show a two-term dependence on copper(II) ion concentrations: linear and second order. Also observed is an inverse dependence on hydrogen ion concentration. Activation parameters have been determined for the disassembly process leading to ΔH^≠ = (+163 ± 15) kJ·mol⁻¹ and ΔS^≠ = (+136 ± 11) J·K⁻¹. A mechanism is proposed in which copper(II) cation is in pre-equilibrium with a reactive site at the rim of the J-aggregate. An intermediate copper species is thus formed that eventually leads to the final metallated porphyrin either through an assisted attack of a second metal ion or through a direct insertion of the metal cation into the macrocycle core

    Phase rigidity breaking in open Aharonov-Bohm ring coupled to a cantilever

    Full text link
    The conductance and the transmittance phase shifts of a two-terminal Aharonov-Bohm (AB) ring are analyzed in the presence of mechanical displacements due to coupling to an external can- tilever. We show that phase rigidity is broken, even in the linear response regime, by means of inelastic scattering due to phonons. Our device provides a way of observing continuous variation of the transmission phase through a two-terminal nano-electro-mechanical system (NEMS). We also propose measurements of phase shifts as a way to determine the strength of the electron-phonon coupling in NEMS.Comment: 7 pages, 8 figure
    corecore