163 research outputs found

    Explicit Construction of the Brownian Self-Transport Operator

    Full text link
    Applying the technique of characteristic functions developped for one-dimensional regular surfaces (curves) with compact support, we obtain the distribution of hitting probabilities for a wide class of finite membranes on square lattice. Then we generalize it to multi-dimensional finite membranes on hypercubic lattice. Basing on these distributions, we explicitly construct the Brownian self-transport operator which governs the Laplacian transfer. In order to verify the accuracy of the distribution of hitting probabilities, numerical analysis is carried out for some particular membranes.Comment: 30 pages, 9 figures, 1 tabl

    Diffusion-Reorganized Aggregates: Attractors in Diffusion Processes?

    Full text link
    A process based on particle evaporation, diffusion and redeposition is applied iteratively to a two-dimensional object of arbitrary shape. The evolution spontaneously transforms the object morphology, converging to branched structures. Independently of initial geometry, the structures found after long time present fractal geometry with a fractal dimension around 1.75. The final morphology, which constantly evolves in time, can be considered as the dynamic attractor of this evaporation-diffusion-redeposition operator. The ensemble of these fractal shapes can be considered to be the {\em dynamical equilibrium} geometry of a diffusion controlled self-transformation process.Comment: 4 pages, 5 figure

    Transfer across Random versus Deterministic Fractal Interfaces

    Full text link
    A numerical study of the transfer across random fractal surfaces shows that their responses are very close to the response of deterministic model geometries with the same fractal dimension. The simulations of several interfaces with prefractal geometries show that, within very good approximation, the flux depends only on a few characteristic features of the interface geometry: the lower and higher cut-offs and the fractal dimension. Although the active zones are different for different geometries, the electrode reponses are very nearly the same. In that sense, the fractal dimension is the essential "universal" exponent which determines the net transfer.Comment: 4 pages, 6 figure

    Optimal villi density for maximal oxygen uptake in the human placenta

    Full text link
    We present a stream-tube model of oxygen exchange inside a human placenta functional unit (a placentone). The effect of villi density on oxygen transfer efficiency is assessed by numerically solving the diffusion-convection equation in a 2D+1D geometry for a wide range of villi densities. For each set of physiological parameters, we observe the existence of an optimal villi density providing a maximal oxygen uptake as a trade-off between the incoming oxygen flow and the absorbing villus surface. The predicted optimal villi density 0.47±0.060.47\pm0.06 is compatible to previous experimental measurements. Several other ways to experimentally validate the model are also proposed. The proposed stream-tube model can serve as a basis for analyzing the efficiency of human placentas, detecting possible pathologies and diagnosing placental health risks for newborns by using routine histology sections collected after birth

    Screening effects in flow through rough channels

    Full text link
    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome from numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, when inertial effects become relevant, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. In addition, we find that, while the permeability of the random channel follows the usual decrease with Reynolds, our results indicate an unexpected permeability increase for the deterministic case, i.e., ``the rougher the better''. We show that this complex behavior is closely related with the presence and relative intensity of recirculation zones in the reentrant regions of the rough channel.Comment: 4 pages, 5 figure

    Optimal branching asymmetry of hydrodynamic pulsatile trees

    Full text link
    Most of the studies on optimal transport are done for steady state regime conditions. Yet, there exists numerous examples in living systems where supply tree networks have to deliver products in a limited time due to the pulsatile character of the flow. This is the case for mammals respiration for which air has to reach the gas exchange units before the start of expiration. We report here that introducing a systematic branching asymmetry allows to reduce the average delivery time of the products. It simultaneously increases its robustness against the unevitable variability of sizes related to morphogenesis. We then apply this approach to the human tracheobronchial tree. We show that in this case all extremities are supplied with fresh air, provided that the asymmetry is smaller than a critical threshold which happens to fit with the asymmetry measured in the human lung. This could indicate that the structure is adjusted at the maximum asymmetry level that allows to feed all terminal units with fresh air.Comment: 4 pages, 4 figure
    corecore