285 research outputs found

    Statistical Mechanics of Charged Particles in the Pressure of Magnetic Irregularities

    Get PDF
    Statistical mechanics of charged particles in presence of magnetic irregularitie

    Ring-type singular solutions of the biharmonic nonlinear Schrodinger equation

    Full text link
    We present new singular solutions of the biharmonic nonlinear Schrodinger equation in dimension d and nonlinearity exponent 2\sigma+1. These solutions collapse with the quasi self-similar ring profile, with ring width L(t) that vanishes at singularity, and radius proportional to L^\alpha, where \alpha=(4-\sigma)/(\sigma(d-1)). The blowup rate of these solutions is 1/(3+\alpha) for 4/d\le\sigma<4, and slightly faster than 1/4 for \sigma=4. These solutions are analogous to the ring-type solutions of the nonlinear Schrodinger equation.Comment: 21 pages, 13 figures, research articl

    Non-Gaussian Statistics of Multiple Filamentation

    Full text link
    We consider the statistics of light amplitude fluctuations for the propagation of a laser beam subjected to multiple filamentation in an amplified Kerr media, with both linear and nonlinear dissipation. Dissipation arrests the catastrophic collapse of filaments, causing their disintegration into almost linear waves. These waves form a nearly-Gaussian random field which seeds new filaments. For small amplitudes the probability density function (PDF) of light amplitude is close to Gaussian, while for large amplitudes the PDF has a long power-like tail which corresponds to strong non-Gaussian fluctuations, i.e. intermittency of strong optical turbulence. This tail is determined by the universal form of near singular filaments and the PDF for the maximum amplitudes of the filaments

    Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons

    Full text link
    We present a unified approach for qualitative and quantitative analysis of stability and instability dynamics of positive bright solitons in multi-dimensional focusing nonlinear media with a potential (lattice), which can be periodic, periodic with defects, quasiperiodic, single waveguide, etc. We show that when the soliton is unstable, the type of instability dynamic that develops depends on which of two stability conditions is violated. Specifically, violation of the slope condition leads to an amplitude instability, whereas violation of the spectral condition leads to a drift instability. We also present a quantitative approach that allows to predict the stability and instability strength

    Generalized Neighbor-Interaction Models Induced by Nonlinear Lattices

    Get PDF
    It is shown that the tight-binding approximation of the nonlinear Schr\"odinger equation with a periodic linear potential and periodic in space nonlinearity coefficient gives rise to a number of nonlinear lattices with complex, both linear and nonlinear, neighbor interactions. The obtained lattices present non-standard possibilities, among which we mention a quasi-linear regime, where the pulse dynamics obeys essentially the linear Schr{\"o}dinger equation. We analyze the properties of such models both in connection with their modulational stability, as well as in regard to the existence and stability of their localized solitary wave solutions

    Formation of singularities for equivariant 2+1 dimensional wave maps into the two-sphere

    Full text link
    In this paper we report on numerical studies of the Cauchy problem for equivariant wave maps from 2+1 dimensional Minkowski spacetime into the two-sphere. Our results provide strong evidence for the conjecture that large energy initial data develop singularities in finite time and that singularity formation has the universal form of adiabatic shrinking of the degree-one harmonic map from R2\mathbb{R}^2 into S2S^2.Comment: 14 pages, 5 figures, final version to be published in Nonlinearit

    Continuations of the nonlinear Schr\"odinger equation beyond the singularity

    Full text link
    We present four continuations of the critical nonlinear \schro equation (NLS) beyond the singularity: 1) a sub-threshold power continuation, 2) a shrinking-hole continuation for ring-type solutions, 3) a vanishing nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that leads to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity{\rev{expanding core}} after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time TcT_c, the phase of the singular core is only determined up to multiplication by eiΞe^{i\theta}. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t→−tt\rightarrow-t and ψ→ψ∗\psi\rightarrow\psi^\ast, the singular core of the weak solution is symmetric with respect to TcT_c. Therefore, the sub-threshold power and the{\rev{shrinking}}-hole continuations are symmetric with respect to TcT_c, but continuations which are based on perturbations of the NLS equation are generically asymmetric

    Self-similar solutions and collective coordinate methods for Nonlinear Schrodinger Equations

    Full text link
    In this paper we study the phase of self-similar solutions to general Nonlinear Schr\"odinger equations. From this analysis we gain insight on the dynamics of nontrivial solutions and a deeper understanding of the way collective coordinate methods work. We also find general evolution equations for the most relevant dynamical parameter w(t)w(t) corresponding to the width of the solution. These equations are exact for self-similar solutions and provide a shortcut to find approximate evolution equations for the width of non-self-similar solutions similar to those of collective coordinate methods

    Azimuthally polarized spatial dark solitons: exact solutions of Maxwell's equations in a Kerr medium

    Get PDF
    Spatial Kerr solitons, typically associated with the standard paraxial nonlinear Schroedinger equation, are shown to exist to all nonparaxial orders, as exact solutions of Maxwell's equations in the presence of vectorial Kerr effect. More precisely, we prove the existence of azimuthally polarized, spatial, dark soliton solutions of Maxwell's equations, while exact linearly polarized (2+1)-D solitons do not exist. Our ab initio approach predicts the existence of dark solitons up to an upper value of the maximum field amplitude, corresponding to a minimum soliton width of about one fourth of the wavelength.Comment: 4 pages, 4 figure
    • 

    corecore