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. ABSTRACT
No7- 13130 | |
We introduce a model to describe the interaction of cosmic

rays (either of solar or of galactic origin) with the solar wind.
- The model consists in replacing the magnetic irregularities in |
the wind by highly localized scattering centers. The statistical
mechanical theory corresponding to this model is traced in detail
from Liouville's theorem through a kinetioc equation to the
conventional diffusion equation. The statistical nature of the
flelds within the magnetic irregularities is described in terms

of an appropriate Fourier analysis. o
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I. INTRODUCTION

To study the interaction of cosmic rays (solar and galactic)
with the solar wind, we assume that it is justified to replace
the effect of the maghetic field irregularities distributed
throughout.interstellér space by fixed scattering centers.
Furthermore, we assume that the interaction among the cosmic
rays can be neglected. We formulate, in detall, the statistical
mechanics that corresponds to this model in Section II.

In Section III we address ourselves to the question of finding
in what sense and-to what degree of approximation it is possible to
use a diffusion equation to represent this system. By means of the
multiple time scale technique (Ref 1), we obtain the kinetic
equation for the distribution function of the cosmic rays. We
prove that the lowest order result, in powers of the dilution of
the scattering centers, 1s the kinetlc equation previously
employed for studying this problem (Ref 2). The dilution parameter
is appropriately small in the solar environment, i.e., the product

~of the mean density of magnetic kinks and the kink volume 1s

approximately 1.3 x'.’LO'2 . In Section IV we prove the H-theorem

:for our kinetic equation. In Section V we obtain solutions of the

kinetic equations that correspond, for large times, to the diffu-~
sion equation (Ref 3). In these calculations, we make the assump=
tion that the gradient of the distribution function is small, and
we do not include (at this point) any large scale magnetic fleld
(Ref 5). The assumption about the smallness of the gradlent,
although JustifiedAwhen particles have already diffused on an
astronomical scale (say a fraction of 1 a.u.), does not hold well
for shorter times. We will discuss separately the problem of large
gradients and the derivation of the density dependence of the
cosmic ray gas transport properties from our theory. This problem
has attracted considerable attention recently (Ref 4). In Section
VI, by expanding the scattering operator with which we constructed
the kinetic equation, we caldulate the'scattering cross section

of a cosmic ray by a magnetic kKink for amall angle deflections.




-The magnetic kink 1s described by a Fourier series with a narrow
band concentrated at low frequencies. Therefore, our formulation

of the problem is particularly well suited for correlation of the
magnetic field data with the diffusion data.



II. FORMULATION OF THE PROBLEM

We consider & system of N-charged particles (cosmic rayé)
and an irregular magnetic field which is highly localized around
M stationary points in space. We assume that the interaction of
a particle with the localized field can be derived from a potential
function ® . PFurthermore, we neglect the interaction among the
charged particles themselves. Thus, the Hamlltonlan of the -system

is

WA . Sy .
H =Zf— to 2 95,1, (%, -XJ-) (2.1)
(= [= J..-:/ { .

Where ( xi,pig are the coqrdinates and momenta of the N-particles,
and {Xiﬂ are the coordinates of the M 1locallzed fields
(magnetic kinks). We have not included in'Eq 2.1 the wall poten-
tial that confines specularly the particles to afinite volume V
since we shall be concerned with the limit of an infinite system
and the wall potential becomes inoperative in this limit.

Let us define a joint distribution function

—
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that gives the probability density for the N  particles to be at

the points { i’pi} in phase space end the flelds to be localizeaq
around the points .(aé . The function Dg, 1s normalized
according to

(2.2)



. The system described satisfies well defined Hamiltonlan
equations of motion. The joint distribution function DNM
obeys, therefore, the Liouville equation

D,y

)f [)/VM ) /7/] Y (203)

where [DNM,H] is the Polsson bracket of the distribution func-
tion with the Hamiltonian of Eq 2.1. We choose DNM to be
symmetric under permutations of {xi,p§ among themselves and
of the tX } among themselves.

The reduced distribution functions are introduced

-  (MAT (VAT N [ = =
fm&ffo, X )= zr-y‘f;r Fdp. L, WAy p,,}-if)(a-u)
The equation that i‘m obeys follows from Eq 2.3
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where Hm and Lm are the operators

/7/,;7=7‘ V“%Z \7@ X’X)ga;- i (2.6)
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We now take the limit of an infinlte system by letting M — «,
V -+ » maintaining the mean density of the fleld points,
n = M/V , constant. '
The explicit equations for the first two distribution func-
tions become, then

e

@7 D) (x78) = L[akv§-E) 24 GiLt) e
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The function fl describes the probability density for a single
cosmic ray whlle the function f2 describes the joint probability
density for one cosmic ray and one scattering center.

The fields describeq by ¢ are assumed to be so highly
localized that we can assign a radius r, to the "size" of the
field inhomogeneities. The operator on the right hand side of
Eq 2.5, and similarly in Eqs 2.8 and 2.9, 1s then of order
n r3 compared to the left hand side of these equations. The

qiagtity n rg is the cube of the ratio of the average size of

an irregularity to the mean distance between irregularities. This
ratio is quite small in the solar cavity (-~ 1.3 x 10'2) and thus
defines a convenient parameter of smallness € for a power series

expansion.



IIT. MULTIPLE TIME SCALE EXPANSION

As was mentioned earlier, we restrict our attention to the
distribution function late in the kinetic stage. The term Vfl
in Eq 2.8, therefore, is of order A~% where the mean free path

is

L~ 75
S .
and o ~ wrg . Therefore, ro/k ~ ¢ which means then that Vfl
in Eq 2.8 1s of order ¢ - On the other hand, Vf, in Eq 2.9
should not be considered of order € since f2 varies sharply
in the region |x - X| - r,; i.e., during a collision.
The various time scales are defined, following the method of

Ref 1, by ,
™~ = 72 7 = ~ T = E”ZL

and the expansions of fl and f2 expanded in the powers of ¢

are given by

7/;'= f/@v‘ 67[, (’)+ 0(6”)
£=£(0) ” {:') +0(e)

The variables T, are to be treated as independent variables

during the calculation and are to be related to t (via
T = €'%) at the end of the calculation.

n
By equating powers of € in Eq 2.8, we readily obtain
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and similarly from Eq 2.9

(©) v |
—()JJZ—’L+<V V—--VQJ %)f()() (3.4)

() AN ©)
a—7{‘+(VV~ V@ >()+%§' gAC/ \7@( X)a—*(cs\

For f(o) we have the equation

sy £ 766 B2 Vi KIE) oo

Eq 3.1 shows that fﬁo) does not vary on the fast time scale. To
solve Eq 3.2 we need fe(o) . This two-body function 1s obtained

from Eq 3.4
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» where we have introduced the collision operator C, by
CL((U/ = W[’//z %

From Eq 2.6 the operator H2 is

H=77-+47éE-X) 75  (3.8)

We shall assume that as Te™ @ the collision operator
02(10) reaches an asymptotic limit 02(") , that is, we assume
that bound states do not exist. In this limit we then have

59 )
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and therefore, from Eq 3.4
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We can therefore conclude, using Eq 3.8, that

7V 2 [C.69f ‘”(*:__ Xo)]=7 7 [¢. (”,zz,a]“ 9)

Note that since féo) is a function of x - X s

V)’(‘ 7[2_ “- V)’Gi #1(0)

Using this result in Eq 3.2, we obtain in the asymptotic 1limit

r () . = _
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By virtue of Eq 3.1, all terms, but the first, in Eq 3.10 are

" independent of To * If we now demand that the expansion of fl

in T, Dbe uniformly valid, we must set

(1)
A Lo
or,

(3.11)

Carrying out the integral on the right hand side of Eq 3.10
along the direction of VvV , we are left with an integral over

the area perpendicular to ¥V , dSL R

- Q
(5&:-1‘-7'17)7[()(5?72“) ja’f V//ww {C (<) &V)(o)} (3.12)
L, /1y 0 by

- __Vr,o
We now assume that the function f2 f;vji) becomes a product of

(i’V) and the distribution of the irregularities F (X)

when the dlstance between the cosmic ray and the magnetic irregu-
larity, |x - xl , is very large compared with the kink size.
What appears then in Eq 3.12 is the difference between the
product distributions evaluated before and after a "collision".
A collision clearly changes ¥V into ¥'!' (with |[¥'] = |¥] for
elastic collisions). Hence, '

(fﬂ/ )7[() fc/s v//'(Z)f (%7t (:?,‘{‘,)jﬂ 13)

If we know the kinematics of a collision, we may transform the
integral over d4S, 1nto an integral over the element 46 of
the scattering angle.’ The differentlal scsttering cross section,
o(6) , is given by

7 (8) =



Assuming for simplicity that F1 is constant 1@ space, Eq 3.13

(2+7:7)f "eit,) = [dor@ 171 [ V675)4 Gx2) s a0

Thus, we have proven that Eq 3.14, which has been used previously
to investigate the diffusion problem (Ref 2) is the lowest order
term in the kinetic equation derived using the Hamiltonian given
in Eq 2.1. | . - |
The kinetlc equation, correct to the next order in € , 1s
obtained from Eq 3.3. Equation 3.3 requires 'Tél) which is deter-

mined from Eq 3.5. After solving Eq 3.6 for f3(o) from Eq3.6 we

find
(0) - y _H"; ( = =
7[ (X v, l ) 3[7Z3 I £ 2{,0) (3.15)

‘W

where, with recorse to Eq 2.6
H=7 0 0862 D)o e

We assume that the operator C3(To) = exp [-H3To] has an
asymptotic value C3(w) , namely

Z'./m/ 7[ (z) C (0-*)7[(0(0) (3.17)

/\r
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We then can write
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and using Eq 3716, we fipd
L78G-T)2 [0 G- m.@é%)[g@gfo)] (3.16)

Since f(o) is a function of X=X = & and x-X = C' , VeV
in Eq 3. 18 may be replaced by "\7"(V‘-'~ + V") . The right hand
side of Eq 3.5 thus becomes

r‘i{jdi /\7§5()7~X’)§;— 5(”)‘:;;,&5’{7,(\7? V;g')—,—% W—)(@d%'
[6@E0) ]
- (7755 V() 2) (4 E [T 2,=0)]

* fd?’V'Vg/[Q (“)7[3(0) (0)J (3.19)
We note the decdmpositibn . .

H- G4 ¢<§)V)+<v Ve 7 V€T JH Gy E)
and the commutation rule:

)4 E)]- 57960 &) V]

The contribution from the first integral on the right hand side
of Eq 3.19 vanishes since

1l
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and Hgféo) 0 in the asymptotic limit. The second integral on

the right hand side of Eq 3.19 in a manner similar to that used
to obtain Eq 3.14, becomes

O, .5 -, 9. 5 _.
(“")jé/f”'(@) V/[f 0/, (xX,7%) é X,X,V,o)]
Eq 3.5, with féO) evaluated in the asymptotic limit then becomes

p (l/

@ ; 0
%/%() a’l J(/ﬁ&' 7 [é ﬁ%;o)]z_]%) (3.20)

which has the solution °

a —//t (l@)*o‘f/r EZZ,/G'L/ ]-//(0 ();z (‘ 7))t
- (z) - )z, gy

g
= -#2’7[(/(0) fdz

where we have made use of Eq 3.7. In the asymptotic 1limit €he
integrand becomes independent of wé and the integral gives rise
to a secular term. Therefore the integrand must vanish and we

have

|
\H
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and

(1) v . |
7LZ (z.)- Cz(’”).ﬁu(a} | (3.23)

2"0 - o°

When we use this last result in Eq 3.3 and eliminate the secular
contribution by means of the requirement that

YAl

ol
v

0 (3.24}
we obtain

<ar Z )7[ ‘ J/(_// &M-(@ /"/[7[(/()‘//7[(1’)](3 25

The term 8f§o>/572 can be set equal to zero since no secular-
itles occur in Eg 3.251 We note that the precise form of Eq 3.22
is not a necessary intermediate step in obtaining Eq 3.25.

13



IV. THE H-THEOREM

We prove here the entropy principle (E-theorem) in the form
appropriate to the lowest order kinetic equation. The angular
averaging performed below is tailored for the discussion of motion
in the presence of fixed scattering centers. We can rewrite
Egs 3.14 and 3.15 in the form

R (o) r) 1) -
(5}/ +7.7) 7[,0 = V(%,{)' /I, ) | (4.1)

[A

% ~, (1),
(& 7o) (£7-17)

(4.2)
where
. )/ch)ﬂzf@)/f/ (.3)
and 'f'§5) ts the angular average defined by
76:{/75 ;,/‘Jdé’ 0’((9)/17/7(\,0/(79 | (4.4)

Let us note that Eq 4.1 has an H-theorem. The entropy function in

lowest order, H(o) 1s defined by

¢ / £ ” 1 - (v (¢
HO =[] dv v Jdsr @i % £ s

14



The. theorem states that

245 < 0

for any distribution function f1<o)

Proof: We use the notation
[ y e
v jdv VZJM/V/O‘(&/FJG/O'(V,@/

We- then have

A (4o G - JdsfintGe)
e (14w 7//(0))[2/ (7[/(0) () /(O)J

(4.6)

Now we assume fg vanishes on the boundaries of the volume of
infegration. Therefore,

[5Gt f {0 juf‘“;z/n U feirgtlown

The remainder of Eq 4.6 can be written as

7 yfdxfw(w)/m( )( W_[@) ( oy

where we used the fact that
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and similarly that

(£~ £9) 4,890

Clearly, from Eq 4.8, we note that

2H° Q.E.D.
or, LY
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V. THE DIFFUSION REGIVE

It is known that the kinetlc equation, Eq 4.1, leads in the

limit 1 >> y™d , to a diffusion equation. We shall show here

that for suxficienuly large times, the "normal® solutions of the
kinetic equation have diffusive behavior. )
Let us Fourier-Laplace transform Eq 4.1 using the notation

(J(O) (37 /o)

(5.2)

We readily obtain -
l—~"" ) P
<///a+u/\"z/f,-')j(o’=}/ja E (5.3)

Dividing Eq 5.3 by p + 12?7'+ v and performing the angular
average by means of the definition Eq 4.4, we find

PN f-&) V) /////
j (k; Vl’_’)_ 70+Y+L?V { +)’+z/('

17
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The long-time behavior of the velocity distribution is governed

'by the solutions of D(k,p) = O where the function D(k,p) 1is
given by

. Rz , |
.D(/e,/ﬁ) = | fa%%%z]"';‘ | (5.5)

We have, in fact ‘ |
(- 4,) - N\ /€ s c'/.éta(z/‘z”
jU) F7i)=) K()e / (5.6)
¢ ! '

where pi(E) are the solutions of D(K,p) = O and R,(k) are
the residues of §°(E,'\7,pi (k)) . We shall approximate the solu-
tions of D(k,p) = O by expanding in powers of X-V/V

—

DE L) = 1- 2 4y %2
3(/’,70) o +Z%</0ﬁ/)4 +

—
For most cases of symmetric cross section KV = 0, so to lowest
order we keep only

(F-7)* = ket

which deflnes the "average" velocity w? . There are three
solutions p,(k) to Eq 5.7. The first two are

ik )=y £lusiz

18



and the third is
b, (k) =y lku))/ 4y

The first two give rise to terms proportional to expf-VT1] in
g °)(E;V,Tl) , wWhich damp out rapidly. We concentrate then on

p3(k) and

FT\( V/ Cku)l
s (/c)fm[,/ [(4 ERe (5.8)

j(/V)
specializing to an initial conditlon

LG 70)=0°7)6(%-%,) 50

which, because of Eq 5.2, corresponds to

_ S 2 - |
FIE7)=¢(r)e (5.10)

We obtain, from Eq 5.8, t, lowest order in ku/v

"‘(/( Xu

’O(U(T) Y §0) 67/”[%,2 ’”_Je (5.11)
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After an inverse Fourier transform, Eq 5.11 reduces €0

_:’/___ . (P (/) [X- % ]

X, ¥, L, ‘\4_77)7\5/4 /aZ 4}? (5.12)

where we have introduced the diffusilon coeffilcient D given by
_ur
= - (5-13)
4y

We, thus, see that for large times our kinetlc equation yields
utomatically the results of the usual diffusion treatment of

problem (Ref 3).

20
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VI. SCATTERING CROSS SECTION

Up to this point we assumed the cross section for the
scattering of a particle by a magnetic irregularity to be known.
We want now to see how we can possibly calculate such a cross
section. .

We have assumed that the field of a typical irregularity ia
confined 40 a reglon in space, approximatad by a sphere or radius
Ty s and that nsrg <L 1 , where ng is the average density of
cencters of irregularities.

It 1s necessary to have further knowledge about the structure
of the magnetic lrregularity in order to calculate the cross
sectlion. Obviously, we cannot make wild guesses as to the
explicit form of the magnetic field of an irregularity which Iis
known to be very complex. It will be sufficient, however, as we
shall see, to make two reasonable assumptions about the model of
an irregularity. _

1. If we pick any straight line cutting through the
(irregularity) sphere, any component of the magnetic field
fluctuates very rapidly along the line. The integral of any
component of the magnétic field along this line practically
vanlshes. .

2. The fluctuating magnetic field can be described by a
Fourler series of large wave numbers k (small wave length) dbut
of relatively narrow band, i.e., k/km <1l , where k igs the
width of the band and km is the mean value of the wave numbers.

We shall employ the collision operator Cz(t) expressed in
Eqs 3.7 and 3.8 to calculate the clange in the velocity of a
particle when it encounters an irregularity. Let us rewrite
the expression for Cz(t) with V¢ of Eq 3.8 replaced by

21
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where g is the magnetic field and is a function of E.= ;'- X
| —— —_ — B
i (4] = (7 P [ '-2—>
| C. &)=ty [-(7 7 + 730 E) & ] (6.1)
Any function g(V) changes in time according to

(7)) o)y (76) 5-2)

The case that we are interested in here is g(¥V) =V . Generally

it is very difficult to calculate Cg(t) or its asymptotic value,

in particular as is the case here, when (€) may have appreciable

gradients. We shall be able, however, to expand Ce(t) in powers
of ¥ x @ and retain terms only up to second order. The reason
why this expansion gives a reasonably good approximation is due

to assumption (1), since, as we shall see, only line integrals of
o) appear in the expansion. We thus expand Cg(t) as follows

: s . .
77 (Tt T e, o T
C.()-c*7 [ are T nm) 2

rt ['[" ra - ’({'{‘f'ﬂl;ﬁ -ZL,,‘_;_.
\ / 7] f‘/:V__ N ‘(o d 7 - & :71
'f‘Jo dfjo At ¢ an)(z;)'&—;.@ VXZG(‘{)Q—;@ '*'(,
| (6.3)

We can thus express v(t) by means of the expansion

- ‘ ..__‘ -———'~I, —‘(Z)

Vt) =7 +47Y+ AV (6.4)
where Vv =v(0) . The first order velocity change 1s given Dby

22
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Similarly, the second order velocity change is gilven by

— ‘-f " ‘é(/V_.. - (t Z‘jV' - -2‘1'/'7 -
/_\V(z).-.{e d%/ dz‘ wa\g)w Vx(j(%%@ }v

(6.6)
Let us first calculate KV(l) remembering that
0w [T - =1
77 L(E)< f(E-TE)
We find
I =
AV(’):: Vlf d ‘(g I/ZL) (6.7)

The last integral, according to agsumption (1), vanishes except

for at most a contribution from one-half wave length of each of

the Fourier components of « But, since this contribution may

be either positive or negative, the average
/
N

—
The second order term, .Av(zz may be written in the form

e3
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| l ’tl = VR SV I
A—V‘=fd%/dz‘ {Vx&)(.g'l/fﬁ?f)xw (E-vt+7t")-
L k@ (B-rteit) ] Tx@ (B4 7)Y

(6.8)-

Since integrals like those in Eq 6.7 vanish, we should retain in
Eq 6.8 only terms in which a given component of the vector appears

twice. We may then write for the ith component

where 1,j,k 1s the cyclic order of the coordinates. If we are
now interested in the change in velocity in the directlon perpen-
dicular to the initilal velocity, we may choose v, =0, vy o= o]

v, = Vv and we find

—

WAE-7T") (6.10)

Av(”) Vjcaj Jr(z-z)w {F ”ag (8

The integral over «1' contributes at most along one-half a wave
—
length. Let the Fourier decomposition of wj(g) be

24




where A = 2r/k. 1g the mean wave length of the fluctuating
field. Eq .10 then becomes

~.

A%(z/‘:\:i _<ﬂ \ (d % ,\/;ﬁ—'.-—

_;L

i) (6.13)

Let us assume that m?(&) is a slowly varying function within
. / ‘
the sphere || < r_ ~and hasthe same form for all components

o' (B) - w () [Ein
-0 g

Since measurements of the interstellar magnetic field are not

sufficient to determine the function w?(g) wa replace the

integrand in Eq 6,13 by its average value. The limi t
4

5 - .. ~ PR
integral over T in Bg§.9.13 are the roo!
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T =€ 28 Tr ey |
| € =\ EZ2E Tt 6.15)

]
i
oD

so that Eq 6.13 reduces to

Z_\\/ (lm) YAOAS \/(%?)z,_ gé-»{_ ’2% (6.16) _

A similar expression is valid for the other perpendicular direction
to the initial velocity, the Jt“ component. The "impact parameter"

b 1s defined by
(-2 YRVAY
b=V E - (&¥) o (eam)

The absolute value of the change in velocity perpendicular to
the initial direction A&v, yields the following expression for

‘the tangent of the scattering angle ©

4 V.| Lw:(f» SR el
o 6 = Vi-z___j.__. -7_—77—’3) .z r=b (6.18)

Finally, the scattering cross section 1s

rlo)--lly - 1ES G #0 em

where otherwilse
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LLW ﬁ/m(/ﬁ.; a/”0)) J= g@ /‘177)1(‘7&)"?/‘/‘—) . (6.20)

The cross section of Eq 6.19 is large but it is confined to a
narrow cone. We find, in fact, for the total cross scection the

geometrical value

0. =j dnole) = g—ﬂl/éww'v@,w-" ) (6.21)

In the collision integral of Eq 4.1 the Torward scattering does
not contribute. The pertinent cross section Gs is then

0, = 0(8) - 0lo) = -3/-1 -——“/ZZZ“Q& -/ J (6.22)

The corresponding total cross section is

g = ()G re) e G)(Ze) e

We thus see a depression of the geometric result by the factor

(3/8) (A /R)* .
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VII. CONCLUSIONS

The interaction of cosmic rays with the magnetic kinks
carrled by the solar wind has been formulated using statistical
mechanical methods. The major simplifying assumptions are:

(1) infinitely massive kinks and (2) vanishing average magnetic
field. We have derived rigorously the kinetic equation appropriatz
for this system and shown that its normal solutions have the
desired diffusive behavior for large times. Our theory focuses

on the regime that corresponds to a dilute system of magnetic
irregularities. Dr. Boldt (Ref 5) has pointed out that since there
is recent evidence for magnetic ripples ( a system of dense, over-
lapping, kinks) on the magnetic sector boundaries the dense kink
reglme, 1i.e., uniform turbulence, is of considerable interest.

We belleve that a major merit of our theory is the ease with
which the observational information concerning magnetic fileld
measurements can be incorporated in the analysis of cosmic ray.
diffusion in the solar wind. ‘
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