2,850 research outputs found
Excited states of a static dilute spherical Bose condensate in a trap
The Bogoliubov approximation is used to study the excited states of a dilute
gas of atomic bosons trapped in an isotropic harmonic potential
characterized by a frequency and an oscillator length . The self-consistent static Bose condensate has
macroscopic occupation number , with nonuniform spherical condensate
density ; by assumption, the depletion of the condensate is small (). The linearized density fluctuation operator and velocity potential operator satisfy coupled equations
that embody particle conservation and Bernoulli's theorem. For each angular
momentum , introduction of quasiparticle operators yields coupled eigenvalue
equations for the excited states; they can be expressed either in terms of
Bogoliubov coherence amplitudes and that determine the
appropriate linear combinations of particle operators, or in terms of
hydrodynamic amplitudes and . The hydrodynamic picture
suggests a simple variational approximation for that provides an upper
bound for the lowest eigenvalue and an estimate for the
corresponding zero-temperature occupation number ; both expressions
closely resemble those for a uniform bulk Bose condensate.Comment: 5 pages, RevTeX, contributed paper accepted for Low Temperature
Conference, LT21, August, 199
Energy and Vorticity in Fast Rotating Bose-Einstein Condensates
We study a rapidly rotating Bose-Einstein condensate confined to a finite
trap in the framework of two-dimensional Gross-Pitaevskii theory in the strong
coupling (Thomas-Fermi) limit. Denoting the coupling parameter by 1/\eps^2
and the rotational velocity by , we evaluate exactly the next to
leading order contribution to the ground state energy in the parameter regime
|\log\eps|\ll \Omega\ll 1/(\eps^2|\log\eps|) with \eps\to 0. While the TF
energy includes only the contribution of the centrifugal forces the next order
corresponds to a lattice of vortices whose density is proportional to the
rotational velocity.Comment: 19 pages, LaTeX; typos corrected, clarifying remarks added, some
rearrangements in the tex
Oscillations of a Bose-Einstein condensate rotating in a harmonic plus quartic trap
We study the normal modes of a two-dimensional rotating Bose-Einstein
condensate confined in a quadratic plus quartic trap. Hydrodynamic theory and
sum rules are used to derive analytical predictions for the collective
frequencies in the limit of high angular velocities, , where the vortex
lattice produced by the rotation exhibits an annular structure. We predict a
class of excitations with frequency in the rotating frame,
irrespective of the mode multipolarity , as well as a class of low energy
modes with frequency proportional to . The predictions are in good
agreement with results of numerical simulations based on the 2D
Gross-Pitaevskii equation. The same analysis is also carried out at even higher
angular velocities, where the system enters the giant vortex regime.Comment: 4 pages, 2 figure
Effective bosonic hamiltonian for excitons : a too naive concept
Excitons, being made of two fermions, may appear from far as bosons. Their
close-to-boson character is however quite tricky to handle properly. Using our
commutation technique especially designed to deal with interacting
close-to-boson particles, we here calculate the exact expansion in Coulomb
interaction of theexciton-exciton correlations, and show that a naive effective
bosonic hamiltonian for excitons cannot produce these X-X correlations
correctly
An efficient method for the Quantum Monte Carlo evaluation of the static density-response function of a many-electron system
In a recent Letter we introduced Hellmann-Feynman operator sampling in
diffusion Monte Carlo calculations. Here we derive, by evaluating the second
derivative of the total energy, an efficient method for the calculation of the
static density-response function of a many-electron system. Our analysis of the
effect of the nodes suggests that correlation is described correctly and we
find that the effect of the nodes can be dealt with
Thermal van der Waals Interaction between Graphene Layers
The van de Waals interaction between two graphene sheets is studied at finite
temperatures. Graphene's thermal length controls
the force versus distance as a crossover from the zero temperature
results for , to a linear-in-temperature, universal regime for
. The large separation regime is shown to be a consequence of the
classical behavior of graphene's plasmons at finite temperature. Retardation
effects are largely irrelevant, both in the zero and finite temperature
regimes. Thermal effects should be noticeable in the van de Waals interaction
already for distances of tens of nanometers at room temperature.Comment: enlarged version, 9 pages, 4 figures, updated reference
An effective theory of Feshbach resonances and many-body properties of Fermi gases
For calculating low-energy properties of a dilute gas of atoms interacting
via a Feshbach resonance, we develop an effective theory in which the
parameters that enter are an atom-molecule coupling strength and the magnetic
moment of the molecular resonance. We demonstrate that for resonances in the
fermionic systems Li and K that are under experimental
investigation, the coupling is so strong that many-body effects are appreciable
even when the resonance lies at an energy large compared with the Fermi energy.
We calculate a number of many-body effects, including the effective mass and
the lifetime of atomic quasiparticles in the gas.Comment: 4 pages, 1 figure, NORDITA-2003-21 C
Compressible quantum phases from conformal field theories in 2+1 dimensions
Conformal field theories (CFTs) with a globally conserved U(1) charge Q can
be deformed into compressible phases by modifying their Hamiltonian, H, by a
chemical potential H -> H - \mu Q. We study 2+1 dimensional CFTs upon which an
explicit S duality mapping can be performed. We find that this construction
leads naturally to compressible phases which are superfluids, solids, or
non-Fermi liquids which are more appropriately called `Bose metals' in the
present context. The Bose metal preserves all symmetries and has Fermi surfaces
of gauge-charged fermions, even in cases where the parent CFT can be expressed
solely by bosonic degrees of freedom. Monopole operators are identified as
order parameters of the solid, and the product of their magnetic charge and Q
determines the area of the unit cell. We discuss implications for holographic
theories on asymptotically AdS4 spacetimes: S duality and monopole/dyon fields
play important roles in this connection.Comment: 30 pages, 2 figures; (v2) small corrections and more ref
Normal Modes of a Vortex in a Trapped Bose-Einstein Condensate
A hydrodynamic description is used to study the normal modes of a vortex in a
zero-temperature Bose-Einstein condensate. In the Thomas-Fermi (TF) limit, the
circulating superfluid velocity far from the vortex core provides a small
perturbation that splits the originally degenerate normal modes of a
vortex-free condensate. The relative frequency shifts are small in all cases
considered (they vanish for the lowest dipole mode with |m|=1), suggesting that
the vortex is stable. The Bogoliubov equations serve to verify the existence of
helical waves, similar to those of a vortex line in an unbounded weakly
interacting Bose gas. In the large-condensate (small-core) limit, the
condensate wave function reduces to that of a straight vortex in an unbounded
condensate; the corresponding Bogoliubov equations have no bound-state
solutions that are uniform along the symmetry axis and decay exponentially far
from the vortex core.Comment: 15 pages, REVTEX, 2 Postscript figures, to appear in Phys. Rev. A. We
have altered the material in Secs. 3B and 4 in connection with the normal
modes that have |m|=1. Our present treatment satisfies the condition that the
fundamental dipole mode of a condensate with (or without) a vortex should
have the bare frequency $\omega_\perp
An Active-Sterile Neutrino Transformation Solution for r-Process Nucleosynthesis
We discuss how matter-enhanced active-sterile neutrino transformation in both
neutrino and antineutrino channels could enable the production of the rapid
neutron capture (r-process) nuclei in neutrino-heated supernova ejecta. In this
scheme the lightest sterile neutrino would be heavier than the electron
neutrino and split from it by a vacuum mass-squared difference roughly between
3 and 70 eV and vacuum mixing angle given by .Comment: 27 pages plus twelve figures. Submitted to Phys. Rev.
- …