210 research outputs found

    Assessment of combined effect of human feces compost and single superphosphate on the behaviour of wheat production

    Get PDF
    Application of organic fertilizers in improving soil fertility has become a major factor that has enabled the world to feed billions of people. However, the required quantities of organic material are enormous, so it becomes necessary to combine different types of fertilizers to feed plants. The effectiveness of human feces compost (HC) alone, as well as in combination with single super phosphate (SSP), was evaluated in the present study. A field experiment was conducted at farmer field located in district Swabi (Pakistan). A total of eight possible treatments combination were arranged in randomized complete block design (RCBD), replicated four times. Two levels of human feces compost (HC), including control (HC0: control and HC1: 7.5 t ha-1) and four levels of P, as single superphosphate (SSP), including control (P0: control, P1:40 kg ha-1, P2: 60 kg ha-1 and P3: 90 kg ha-1) were utilized in the experiment. Results revealed that among all the treatments, combined application of SSP at 60 kg ha-1 along with 7.5t ha-1 HC significantly improved the growth, as well as the yield parameters of wheat crop. These results allow saving a half of usually made mineral fertilizer dose for the cultivation of wheat crop. Combined use of HC and SSP were strongly recommended for obtaining maximum wheat yield in the prevailing soil and environmental conditions

    EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach

    Get PDF
    Much attention has been paid to the recognition of human emotions with the help of electroencephalogram (EEG) signals based on machine learning technology. Recognizing emotions is a challenging task due to the non-linear property of the EEG signal. This paper presents an advanced signal processing method using the deep neural network (DNN) for emotion recognition based on EEG signals. The spectral and temporal components of the raw EEG signal are first retained in the 2D Spectrogram before the extraction of features. The pre-trained AlexNet model is used to extract the raw features from the 2D Spectrogram for each channel. To reduce the feature dimensionality, spatial, and temporal based, bag of deep features (BoDF) model is proposed. A series of vocabularies consisting of 10 cluster centers of each class is calculated using the k-means cluster algorithm. Lastly, the emotion of each subject is represented using the histogram of the vocabulary set collected from the raw-feature of a single channel. Features extracted from the proposed BoDF model have considerably smaller dimensions. The proposed model achieves better classification accuracy compared to the recently reported work when validated on SJTU SEED and DEAP data sets. For optimal classification performance, we use a support vector machine (SVM) and k-nearest neighbor (k-NN) to classify the extracted features for the different emotional states of the two data sets. The BoDF model achieves 93.8% accuracy in the SEED data set and 77.4% accuracy in the DEAP data set, which is more accurate compared to other state-of-the-art methods of human emotion recognition. - 2019 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was funded by Higher Education Commission (HEC): Tdf/67/2017.Scopu

    Does concoction of organic and inorganic fertilization have potential to enhance wheat yield?

    Get PDF
    Soil fertility and maximum crop production can only be achieved through proper fertilization. Proper and balanced fertilization have a considerably positive effect on plant growth and yield. Due to continuous use of chemical fertilizers, the organic matter and nutrient content of the soil decreased gradually. Therefore, in modern era, agriculture scientists are now engaged to establish an agricultural system, which can not only lower the production cost, but also conserve the natural resources. Soil, as a source of nutrients, must be protected from various kinds of external factors, especially from the addition of fertilizers in excessive rates. Any degradation in the quality of soil can significantly produce many undesirable changes in the environment and also reduces the overall crop yield. So, the concoction of organic and inorganic fertilization is an alternative and most effective method for sustainable and cost-effective management for maximum crop production, without effecting the environment. The Integrated Nutrient Management provides an excellent opportunity not only for sustainability of the soil, but also enhances the overall crop productivity. The present review study was carried out with the main aim to evaluate the role of combined application of organic and inorganic fertilizers on wheat crop production. The outcome of the study concluded that combined application of both organic and inorganic fertilizers significantly improve the wheat crop production, as compared with the sole application of either organic or inorganic fertilizers

    Use of Evidence-Based Best Practices and Behavior Change Techniques in Breast Cancer Apps: Systematic Analysis

    Get PDF
    Background: Theoretically designed mobile health (mHealth) breast cancer interventions are essential for achieving positive behavior change. In the case of breast cancer, they can improve the health outcomes of millions of women by increasing prevention and care efforts. However, little is known about the theoretical underpinnings of breast cancer apps available to the general public. Objective: Given that theories may strengthen mHealth interventions, this study aimed to identify breast cancer apps designed to support behavior change, to assess the extent to which they address content along the cancer care continuum and contain behavior change techniques, and to assess the degree to which star rating is related to theory-based design. Methods: Using a criteria-based screening process, we searched 2 major app stores for breast cancer apps designed to promote behavior change. Apps were coded for content along the cancer care continuum and analyzed for behavior change techniques. The Mann-Whitney U test was used to examine the relationship between star ratings and the use of behavior change techniques in apps with star ratings compared to those without ratings. Results: The search resulted in a total of 302 apps, of which 133 were identified as containing breast cancer content. Only 9.9% (30/302) of apps supported behavior change and were further analyzed. These apps were disproportionally focused on behaviors to enhance early detection, whereas only a few apps supported care management, treatment, and posttreatment behaviors. Regarding theories, 63% (19/30) of apps customized content to users, 70% (21/30) established a health-behavior link, and 80% (24/30) provided behavior change instructions. Of the 30 apps, 15 (50%) prompted intention formation whereas less than half of the apps included goal setting (9/30, 30%) and goal reviewing (7/30, 23%). Most apps did not provide information on peer behavior (7/30, 23%) or allow for social comparison (6/30, 20%). None of the apps mobilized social norms. Only half of the apps (15/30, 50%) were user rated. The results of the Mann-Whitney U test showed that apps with star ratings contained significantly more behavior change techniques (median 6.00) than apps without ratings. The analysis of behavior change techniques used in apps revealed their shortcomings in the use of goal setting and social influence features. Conclusions: Our findings indicate that commercially available breast cancer apps have not yet fully realized their potential to promote behavior change, with only a minority of apps focusing on behavior change, and even fewer including theoretical design to support behavior change along the cancer care continuum. These shortcomings are likely limiting the effectiveness of apps and their ability to improve public health. More attention needs to be paid to the involvement of professionals in app development and adherence to theories and best practices in app design to support individuals along the cancer care continuum

    Control of Hybrid Diesel/PV/Battery/Ultra-Capacitor Systems for Future Shipboard Microgrids

    Get PDF
    In recent times, concerns over fossil fuel consumption and severe environmental pollution have grabbed attention in marine vessels. The fast development in solar technology and the significant reduction in cost over the past decade have allowed the integration of solar technology in marine vessels. However, the highly intermittent nature of photovoltaic (PV) modules might cause instability in shipboard microgrids. Moreover, the penetration is much more in the case of utilizing PV panels on ships due to the continuous movement. This paper, therefore, presents a frequency sharing approach to smooth the effect of the highly intermittent nature of PV panels integrated with the shipboard microgrids. A hybrid system based on an ultra-capacitor and a lithium-ion battery is developed such that high power and short term fluctuations are catered by an ultra-capacitor, whereas long duration and high energy density fluctuations are catered by the lithium-ion battery. Further, in order to cater for the fluctuations caused by weather or variation in sea states, a battery energy storage system (BESS) is utilized in parallel to the dc-link capacitor using a buck-boost converter. Hence, to verify the dynamic behavior of the proposed approach, the model is designed in MATLAB/SIMULINK. The simulation results illustrate that the proposed model helps to smooth the fluctuations and to stabilize the DC bus voltage

    Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory

    Get PDF
    A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams

    Static and vibration analysis of functionally graded beams using refined shear deformation theory

    Get PDF
    Static and vibration analysis of functionally graded beams using refined shear deformation theory is presented. The developed theory, which does not require shear correction factor, accounts for shear deformation effect and coupling coming from the material anisotropy. Governing equations of motion are derived from the Hamilton's principle. The resulting coupling is referred to as triply coupled axial-flexural response. A two-noded Hermite-cubic element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for functionally graded beams with simply-supported, cantilever-free and clamped-clamped boundary conditions to investigate effects of the power-law exponent and modulus ratio on the displacements, natural frequencies and corresponding mode shapes

    Low-Rank Multi-Channel Features for Robust Visual Object Tracking

    Get PDF
    Kernel correlation filters (KCF) demonstrate significant potential in visual object tracking by employing robust descriptors. Proper selection of color and texture features can provide robustness against appearance variations. However, the use of multiple descriptors would lead to a considerable feature dimension. In this paper, we propose a novel low-rank descriptor, that provides better precision and success rate in comparison to state-of-the-art trackers. We accomplished this by concatenating the magnitude component of the Overlapped Multi-oriented Tri-scale Local Binary Pattern (OMTLBP), Robustness-Driven Hybrid Descriptor (RDHD), Histogram of Oriented Gradients (HoG), and Color Naming (CN) features. We reduced the rank of our proposed multi-channel feature to diminish the computational complexity. We formulated the Support Vector Machine (SVM) model by utilizing the circulant matrix of our proposed feature vector in the kernel correlation filter. The use of discrete Fourier transform in the iterative learning of SVM reduced the computational complexity of our proposed visual tracking algorithm. Extensive experimental results on Visual Tracker Benchmark dataset show better accuracy in comparison to other state-of-the-art trackers
    corecore