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Abstract: Kernel correlation filters (KCF) demonstrate significant potential in visual object tracking by
employing robust descriptors. Proper selection of color and texture features can provide robustness
against appearance variations. However, the use of multiple descriptors would lead to a considerable
feature dimension. In this paper, we propose a novel low-rank descriptor, that provides better
precision and success rate in comparison to state-of-the-art trackers. We accomplished this by
concatenating the magnitude component of the Overlapped Multi-oriented Tri-scale Local Binary
Pattern (OMTLBP), Robustness-Driven Hybrid Descriptor (RDHD), Histogram of Oriented Gradients
(HoG), and Color Naming (CN) features. We reduced the rank of our proposed multi-channel
feature to diminish the computational complexity. We formulated the Support Vector Machine (SVM)
model by utilizing the circulant matrix of our proposed feature vector in the kernel correlation filter.
The use of discrete Fourier transform in the iterative learning of SVM reduced the computational
complexity of our proposed visual tracking algorithm. Extensive experimental results on Visual
Tracker Benchmark dataset show better accuracy in comparison to other state-of-the-art trackers.

Keywords: circulant matrix; texture; tracking; convolution; filter

1. Introduction

Visual tracking is the process of Spatio-temporal localization of a moving object in the camera
scene. Object localization has potential applications, including human activity recognition [1], vehicle
navigation [2], surveillance and security [3], and human-machine interaction [4]. The researchers are
developing robust trackers to reduce the computational cost of the visual object tracking algorithm.
Several reviews on robust tracking techniques have been published [5-7]. The results discussed in
this paper show that the tracking is affected by the geometric and photometric variations in the
object appearance. Visual tracking is desired to be robust against intrinsic variations (e.g., pose,
shape deformation, and scale) and extrinsic variations (e.g., background clutter, occlusion, and
illumination) [8,9]. Significant efforts have been made to extract invariant features through handcrafted
and deep learning methods. The deep learning approaches have achieved a higher accuracy; however,
a massive training data is required, which is not often available in many surveillance applications.
The handcrafted method, on the other hand, only requires a careful selection of discriminative features
in the object appearance.

Tracking techniques reported in the literature can generally be classified into three groups:
generative, discriminative, and filtered based tracker. The generative models [10] identify the target
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among many sampled candidate region through similarity function. The test instance is decided as the
target location when it has the highest similarity to the appearance model among the sampled candidate
regions. The generative tracker, therefore, undergoes through a high computational overhead. The
discriminative trackers [11] use the target samples to learn a classifier that can differentiate the target
from its background. A discriminative tracker largely depends on the positive and negative samples to
update the classifier during tracking. The large sample set can make the classifier more robust; however,
it is not available due to time-sensitivity. During the last decade, considerable research on correlation
filter-based (CFB) trackers [12] is performed. CFB frameworks brought various improvements in the
visual tracking process. The correlation filters include the circulant matrix and fast Fourier transform
(FFT), which can employ an extensive sample set to train the classifier. The weighted mask of the
kernelized correlation filter (KCF) [13] makes the tracker more robust to the variations in the visual
scene. Despite the robustness, KCF continuously requires to update the learned kernel along with
the changes in the target appearance. However, such a model update mechanism is sensitive to
occlusions. The correlation filter-based tracker performance depends on the quality of the features.
Moreover, large dimensionality of the feature vector is also a barrier for the tracker to participate in the
real-time scenarios.

In this work, we identified a feature set, that improves the tracking performance even in the
presence of intrinsic and extrinsic variations. We have fused multiple handcrafted feature channels to
get a response map of the target object’s position in each new frame of the video. The dimensionality
of the fused feature vector is reduced by selecting ten high entropy variables from the Principal
Component Analysis (PCA) output. Instead of the euclidean distance of the feature variables,
Pearson’s coefficients of skewness is used as PCA input, as shown in Figure 1. Moreover, we have
used the circulant matrix along with fast Fourier transform in the kernel correlation filter to reduce the
computation complexity of our tracker. Extensive experiments performed over benchmark dataset
reveal that the proposed descriptor provides considerable improvement in precision and success rate.

1
1
1
Fusion and I
reduction 1
1
1
1
l

HOGs RDHD OMTLBP M\I
(32) (lli (1) (1)

ror

Low rank

Proposed Multi-Channel Features (f) feature ®
(c) (d) (e)
e ————————— ~
"r N\
Il 11
1 11
1 11
IFFT i F ' :.—‘ FET |
11
—— 1 Fourier of X 11 —
n symmetrical Fourieroflow ||
\\  Gaussian filter \ rank features (£) 11
NMz=z=====l__So===o==0
(i) (h) (8) Flow diagram (f)
______ \ — —
r Proposed | Zl::tl:_::: Threshold Pearson’s Descending Se::ecsttlo Low rank |
I'Multi-Channel of feature =1 function ™| coefficient PCA |™*| order of the ™| Entropy |™*! entro | features I
Features (!) N of Skewness variable score tropy 1 (1)
| Yhainanhivk o variables variables N/

(d) Fusion and reduction

Figure 1. Framework of the proposed tracker.

The benchmark dataset [8] is a useful tool to evaluate the performance of visual trackers.
The dataset provides the ground truth position of the target in each frame. The dataset set contains
100 sequences labeled with 11 different attributes. Each frame sequence is manually specified with
multiple challenges. The overlap ratio of estimated and the ground truth bounding box describes the
accuracy of the trackers.
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The remaining discussion of the paper is organized as follows. Section 2 discusses the related
work from the literature. Section 3 contains the detail about the proposed tracker methodology.
Section 4 presents the results in the shape of graphs related to precision and success rate, bar plots,
and comparison table. The conclusion of the paper is drawn in Section 5.

2. Related Work

Visual object tracking has been extensively studied and discussed in [14,15]. The visual trackers
can be grouped into single vs. multi-object trackers, context-aware vs. unaware, and generative
vs. discriminative trackers. Single object trackers [16] can only track a single target at a time, while
multi-object trackers [17] can monitor more than one object at the same instant. The discriminative
models in [18,19], employ the handcrafted features to train the ensemble classifier. In [20,21],
tracking by detection through deep learning is studied. To deal with appearance variability,
the discriminative methods, update their classifier at each location of the candidate, which results in
a massive computational cost. In [22,23] sparse representation and metric learning [10] are used to
build the generative model-based trackers. The generative model is updated at each location of the
candidate to avoid the tracking drift. Similar to the discriminative model, the generative model also
suffers from a huge computational load.

Sparsity-based Collaborative Model (SCM) [24] and Adaptive Structural Local-sparse Appearance
model (ASLA) [25] are proposed to deal with extreme variations in the target appearance. SCM and
ASLA both suffer from a significant scale drift, whenever the target has rotating motions and fast scale
changes. The MUIti-Store Tracker (MUSTer) [26], and Multiple Experts Using Entropy Minimization
(MEEM) [27] employ ensemble-based methods to solve the drift problem in online tracking. However,
MEEM fails whenever identical objects appear in the visual scene.

The correlation filter-based tracker [28] attempts to minimize the sum of squared error between
the actual and desired correlation response. In [29,30] the use of Fast Fourier Transform has reduced the
correlation cost. The work in [28] has introduced, multi-channel feature map by employing color and
texture descriptor combination. Kernelized correlation filters were developed in [31-33]. The synthetic
training samples generated by the circular shift operation creates a boundary effect. The training of the
kernelized correlation filters is severely affected by such synthetic data. In [34,35], spatial regularization
is applied over the correlation filter to remove the boundary effect. The algorithm developed in [36]
overcomes the boundary effect by simultaneous learning of the correlation filter and its desired
response map. Discriminative Correlation Filter (DCF) [37], trackers employ Fourier transforms to
efficiently learn a classifier on all patches of the target neighborhood. However, the discriminative
correlation filter based tracker also suffers from the spatial boundary effect. The Spatially Regularized
Discriminative Correlation Filters (SRDCF) [35] utilize the spatial regularization to vanish the boundary
effect of the DCF. The SRDCF fails when the target object is hollow at the center; the filter then considers
the background pixels as a target, that leads to the drift problem. The Channel and Spatial Reliability
Discriminative Correlation Filters (CSRDCF) [38] includes a color histogram-based segmentation mask,
which avoids the background pixels. The Discriminative Scale Space Tracking (DSST) [39] enhances
the tracking speed, but the performance is inferior in comparison to CSRDCF. In SRDCFdecon [40]
adaptive decontamination is used which adaptively learns the reliability of each training sample and
eliminates the influence of contaminated ones. The minimum barrier distance (MBD) [41] is developed
to mitigate the impact of background on the tracker accuracy. The MBD consider the dissimilarity
value to weight the extracted feature at each target position. The MBD based tracker can precisely
locate the target an all attributes of OTB database, but it fails at low resolution, and clutter background.

Correlation filters utilize multiple different combinations of color and texture features, extracted
from the patches in the search window. The multi-channel HoG feature [42] integrated with color
naming features [43] provide the basis for kernelized correlation filters based tracking methods cite19.
The handcrafted features have produced excellent results on the existing benchmark datasets;
However, they provide poor performance when there is a rapid variation in the object appearance.
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The Color Histograms (CHs) based handcrafted features are robust to the fast motion of the object,
but they result in a poor performance in the presence of illumination variations, and background
clutters [44]. A robust descriptor can significantly improve the performance of visual tracking. In [45],
the concentration of the feature map has shown favorable performance even in the presence of
target object state and color variations. Recently, SVM-based support correlation filters (SCFs) [43]
have increased efficiency by utilizing the circulant matrix. Moreover, multi-channel SCF (MSCF),
kernelized SCF (KSCF), and scale-adaptive KSCF (SKSCF) further improves the accuracy and efficiency
of the trackers.

3. Proposed Method

The proposed tracker incorporates the discriminant color and texture features to achieve a
better precision and success rate. A novel fusion and reduction approach is employed to reduce the
computational cost. The details of the proposed multi-channel feature and dimensionality reduction
are discussed as follows.

Multi-Channel Feature

The image target patch in Figure 1b is described using multi-channel features of the proposed
visual tracking approach. A combination of a total of 45 channels consisting of HoG, Color Naming,
RDHD [46,47], and the magnitude component of Overlapped Multi-oriented Tri-scale Local Binary
Pattern (OMTLBP) [48] is used to describe the object with better accuracy. The Felzenszwalb’s HoG
(FHoG) feature [42] vector is extracted from the patch of each input frame shown in Figure 1la.
Each patch is divided into a grid, with each grid cell of size 4 x 4. The 32-dimensional feature
vector represents each cell in the grid. Total nine orientations described through 27 variables are
used in combination with four texture and one truncation variable to describe the grid cell. Let
fi = {w/w € R¥} is the FHoG feature vector for each grid cell. The color names (CN) [43] feature
with vocabulary size 11 is extracted from each grid cell of the input patch. Suppose f, = {x/x € R!!}
is the feature vector representing the colour naming shown in the Figure 1c.

The RDHD [47] enhances the discriminative capability of the proposed multi-channel feature.
The extrema responses of both first and second-order symmetrical Gaussian derivative filters are
quantized to obtain the robust features. The symmetrical Gaussian derivative filters applied on the
target patch S, which is presented through the following mathematical equations.

1
HF"™ = 5 (Sxx + Sy + \/(Sxx = Syy)? + 45926y>' @
w1
H2min = > (Sxx +S, — \/(Sxx —Syy)? +4s§y). 2
D = HJ"* — HJ"" =\ [(Sux + Syy)? + 453, @)
B 1 (7 X2+2yZ )
G(x,y) — %e 20 (4)

where Sy = Gy xS, Sy = Gy * S, Sxx = Gxx xS, Syy = Gyy x S and Syy = Gyy * S. while Gy, Gyy and
Gy represent the second order partial derivatives of the symmetrical Gaussian function with respect
to x, y, and (x, y). The symmetrical Gaussian function is shown in Equation (4). The channel D of
RDHD obtained through Equation (3) is used as a multi-channel feature in the proposed descriptor.
The f3 = {w/w € R!} represent the noise robust RDHD feature.

The rotation invariant magnitude component of Overlapped Multi-oriented Tri-scale Local Binary
Pattern (OMTLBP_M?f‘Rz) [48] is also included in the multi-channel feature to increase the robustness of
the visual object descriptor. The total number of sample points P = 8 and radius R = {1,2,3} is used
to extract the OMTLBP_M}Z‘,“R2 as shown in Equation (5). The x(u,v) tends to be 1, when u is greater
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than v, otherwise 0. In Equations (5) and (6) the i, is the mean value of the kth magnitude component
m’r‘lc extracted from the segment (r, c) of the input image. We assume f; = {z/z € R!} represent the
OMTLBP_M?};“R2 feature vectors. The Multi-channel feature 'R’ described in Equation (7) is obtained by
the concatenation of FHoG, CN, RDHD [47], and OMTLBP_M?’”RZ.

k .
riu2 __ X(mr,u ]/lm), if M_uP,R <2
OMTLBP Mp g = { P+1, otherwise ©)
P-1 0 = k k-1
M_Upr = |x(mpc ') = x (e, )|+ Y (X (M e, pim) — x (e )| 6)
k=1
R = HoG||CN||[RDHD_D||OMTLBP_M}'g§ @)

where the symbol || represent the concatenation operation. R denote the final multi-channel feature.
The dimensionality reduction operation is performed over the multi-channel feature to reduce the
complexity of the proposed tracker.

Fusion and Reduction

Recently, fusion, and reduction [49-51] approach shown in the Figure 1d has been developed,
to reduce the dimensionality of the feature vector. The robust variables are selected, among the fused
features set to increase the recognition and decrease the computation time. The feature vector R in
Equation (7) is the fused vector. After fusion, robust variables are selected based on the entropy value
of their coefficient of skewness. Let r; be the variables in the fused feature vector R.

®)

©)

where M represents the total number of grid cells in the frame. The ¢ denote the Euclidean distance
between the variables of the fused feature. The / is a thresholding function, that is defined as:

R if <04

po R A9 <0 (10)
0, if 1 >04

_ Rp—x (1)

TV
where & is the threshold function, which is derived for selection of minimum distance features
and R,; denotes the minimum distance feature vector. R, is used to compute skewness of values.
We have selected the threshold parameter as 0.4 in Equation (10). We tested the performance of our
tracker with various values of threshold parameter used in Equation (10) of the manuscript. Through
experimentation, we found that the threshold parameter 0.4 in Equation (10), provides the highest joint
maxima for both AUC and precision when validated on OTB-50 and OTB-2013 dataset. The symbol
¢? and % denote the variance and median values of R,,. Then the technique of principal component
analysis is applied on < to calculate the score of each feature. Finally, the entropy values associated
with each variable of the feature are sorted into descending order. Ten highest score variable is selected
as a feature vector. The output low-rank representation is denoted by t, as shown in Figure 1le.

m? 4 n?
Ymn = exp(=—5—) (12)
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The t € RM*N*D denote extracted multi-channel feature map of the input template training patch.
The size of each channel is M x N variables, with total number of D = 45 channels in the feature map.
The y € RM*N s the symmetrical Gaussian label of dimension equal to the feature map, and
o = 0.02y/M x N. The proposed method include a symmetrical Gaussian filter label to locate the
position of the target in the subsequent frame of the video. The Gaussian filter label used is symmetrical
shape similar to maxican hat [52,53] shown in the Figure 1f-g. Let f = F(t) and § = F(y), where F(.)
represent the Discrete Fourier Transformation of the multi-channel features.

The training process identifies the function f(t) = w’t, that can reduce the lease square error of
the Ridge Regression, shown in Equation (8). The aim is to learn the support correlation filter w and the
regularization parameter A that reduces the least square error in the Ridge Regression. Equation (13)
gives the close from of the minimization.

min = 3 (f (m,m) = y(m,m)) + o] (13)
~_ ¥ _H
C=FEr 0T (9

where T is the circulant matrix of the multi-channel feature vector t. The T! represent the hermitian
transpose, i.e., TH = (T*), and T* is the complex-conjugate of T. For any ith input frame of the
video, the position of the target object is the location of the maximum response value in R;, described
in Equation (15).

(Ri) = F (& Ow) (15)

where 7! denotes the inverse Fourier transform shown in the Figure 1h. The 2; = F(z) is the Fourier
domain of the test multi-channel feature z. The symbol © represent the element-wise product of the
matrices.

(xi,yi) = argmaxRi(xm, Yn) (16)
mn
where x; and y; represent the position of the target in the ith frame of the video. The target position in
the ith frame is found at the largest response R. The bounding box of the target size around x; and y; is
used to label the target in the ith frame of the video as shown in Figure 1i.

4. Experimental Setup

4.1. Dataset and Evaluated Trackers

The performance of the proposed multi-channel feature is evaluated on Tracker Benchmark (TB)
dataset [8]. The TB contains a total of 100 images of annotated sequences with eleven different attributes.
The dataset includes variations in illumination, scale, and resolution. The objects in the dataset
suffer from deformation, occlusion, and background clutter. The video sequence is captured in
the in-plane and out-of-plane rotation. The blurriness due to fast motion and out of view object is
captured in the sequence. The TB is classified into three different test suits, namely OTB2013, OTB50,
and OTB2015. The information about the target object true bounding box is included with the first
frame of each sequence. The ground truth positions of the subject in each frame are provided with the
dataset to calculate the accuracy.

For comprehensive comparisons, we employed the proposed descriptor in KSCF and SKSCF
methods. The SKSCF methods with linear, polynomial, and Gaussian kernel is studied in this work.
The KSCF and SKSCF of Gaussian kernel are evaluated on multi-channel HoG and Color naming
features as shown in Table 1. The results in Table 1 show that the tracker SKSCF along with
Gaussian kernel provide 87.04% DP and 62.30% AUC, which is better in comparison to linear and
polynomial kernel type. The results of the proposed tracker with Gaussian kernal is also compared
with other correlation filters based trackers (e.g., HDT [54], MEEM [27], Struck [55], KCF [32], BIT [56],



Symmetry 2019, 11, 1155 7 of 14

CSRDCEF [38], CT [57], LCT [58], MIL [18], ASLA [25], L1IAPG [59], TLD [60], CXT [61], SCM [24],
Staple [62], and SRDCF [35]).

Table 1. Performance comparison of various correlation filter and the kernel combination for the
multi-channel HoG and Color naming features.

Kernels Linear Polynomial Gaussian
Mean DP (%) 83.89 85.91 87.04
SKSCF Mean AUC (%)  59.33 60.82 62.30
Mean FPS (%) 14 11 8
Mean DP (%) 82.00 84.20 85.00
KSCF  Mean AUC (%)  56.20 57.10 57.50
Mean FPS (%) 94 55 35

4.2. Evaluation Procedure

The one-pass evaluation (OPE) plots [8] are used to evaluate and compare the performance of the
proposed descriptor with other methods. The OPE consist of precision and success plots used for the
evaluation of our proposed tracker.

The precision vs. location error threshold plot evaluates the tracking precision. The precision
illustrates the number of estimated target positions which lie within the defined threshold distance
from the ground truth. The location error is the average Euclidean distance between the object’s
estimated position and the annotated ground truth position. The location error describes the gap in
term of pixels only and does not care for the size and scale of the target object. The threshold error
ranges between 0 and 50 pixels is used to calculate the average precision of each sequence. The distance
precision (DP) is at location error of 20 pixels.

The success rate vs. overlap threshold is also used in parallel to evaluate our tracker. The success

rate is the percentage of frames with an overlap ratio of 7y greater than a given threshold of . Where
Besthgth
BestUBgy,
The range of threshold 7 is between 0 and 1. The trapezoidal integration is used to calculate the Area

Under the Curve (AUC) of the success plot. The precision and success plot shown in Figure 2 show a
comparison of the proposed tracker with other state-of-the-art trackers. The DP and AUC in Figure 3
describe the results more conveniently.

7 is the overlap ratio between estimated Bes: and ground truth By, bounding box, i.e.,
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Figure 3. The precision and area under the curve for various trackers on OTB test suits. (a) OTB2013;
(b) OTB2015; (c) OTB50.

4.3. Parameter Setting

The experimental results are obtained on the desktop computer with an Intel 2 core 2.2 GHz CPU
and 8 GB RAM and Nvidia GTX 750 Ti GPU. The parameter scales ¢ and scales factor v of SKSCF are
21 and 1.04, respectively. The standard deviation ¢ of the kernel is 0.5 for SKSCF. The optimal setting
for the upper and lower threshold (¢; 6,,) are (0.3, 0.6). The cell size and orientation of the HoG feature
are set to 4 and 9, respectively. The OMTLBP is defined for 8 sample point with scale values ranges
from 1 to 3.

4.4. Overall Performance

Table 1, summarizes the results of SKSCF method for the different type of kernels on 50 challenging
image sequences of TB-100 dataset [8]. Table 1 shows that SKSCF with Gaussian kernel outperforms the
polynomial and linear in mean DP and AUC. However, the linear kernel can process more frames per
second (FPS) in comparison to Gaussian and polynomial. In this work, we have selected the Gaussian
kernel with different variants of correlation filters. Eleven visual attributes classify the annotated
sequences of the benchmark dataset [8]. The 11 characteristics of the sequences includes background
clutter (BC), illumination variation (IV), scale variation (SV), deformation (DEF), fast motion (FM),
in-plane rotation (IPR), low resolution (LR), motion blur (MB), occlusion (OCC), out-of-view (OV),
and out-of-plane rotation (OPR).

The proposed tracker evaluated on three benchmark test suits of OTB dataset. The OTB-2015 test
suit is used to evaluate the proposed tracker for dimensionality reduction using the Gaussian kernel.
In the absence of dimensionality reduction, the SKSCF-proposed gives 89.1%, and 66.1% mean DP and
AUC respectively at speed seven frames per second speed. The same SKSCF-proposed when tested in
the presence of the dimensionality reduction, it provided 88.87% average DP and 65.6% average AUC
at rate eight frames per second speed. By employing the dimensionality reduction, the mean DP by
0.04% while the AUC reduced by 0.05% at the cost of one frame per second increase in the speed.

The precision and success rate mentioned in Tables 2 and 3 demonstrate that the proposed tracker
leads other methods both in precision and success rate. Table 2 compare the performance of our
proposed tracker with other recently developed methods on OTB-2013 test suits. Table 2 shows that
our proposed tracker has a better precision on all attributes except in the case of BC, SV, and IPR.
The precision of the proposed tracker is 1.9%, 3.3%, 0.6%, 1.2%, 0.2%, 1.8%, 0.8%, and 1.5% higher
than the other trackers for FM, MB, DEF, IV, LR, OCC, OPR, and OV, respectively. The success rate is
lower only for the case of MB, IPR, and SV. The success rate is 0.5%, 0.1%, 0.7%, 1.6%, 3.9%, 0.6%, 0.5%,
and 0.5% higher that of other trackers for FM, BC, DEF, 1V, LR, OCC, OPR, and OV, respectively.
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Table 3 demonstrates a performance comparison on OTB-2015 test suit. Table 3 shows that our
proposed tracker have 4.5%, 2%, 1.1%, 2.8%, 2.6%, 1.5%, and 1.2% higher precision that other tracker
on FM, MB, DEF, IV, LR, OCC, and OPR attributes. The precision of the proposed tracker is 0.6%, 3.3%,
1.3%, and 1.5% lower than the best trackers for BC, IPR, SV, and OV respectively. The success rate of
the proposed tracker is 0.6%, 0.4%, 0.1%, 0.3%, 0.1, 2.2%, and 5.3% higher for BC, MB, DEF, 1V, LR,
OCC, and OV respectively. The success rate is lower for the case of FM, IPR, OPR, and SV.

Table 2. SKSCF-Proposed descriptor comparison with other trackers on OTB-2013 [8] test suit.

Attributes M BC MB  DEF v IPR LR OCC OPR OV SV

SKSCF-Proposed 0.798 0.829 0.835 0.899 0.853 0.811 0.598 0.890 0.865 0.815 0.800
SKSCF_HoG_CN [13] 0.779 0.859 0.802 0.893 0.841 0.810 0596 0.872 0.857 0.800 0.809
KSCF_HoG_CN [13] 0.680 0.825 0.761 0.854 0.805 0.816 0.555 0.852 0.836 0.697 0.768

MEEM [27] 0.745 0802 0721 0856 0.771 0.796 0529 0.801 0.840 0.726 0.795
TGPR [63] 0579 0763 0570 0.760 0.695 0.683 0.567 0.668 0.693 0.535 0.637

KCF [32] 0564 0752 0599 0747 0687 0.692 0379 0735 0.718 0.589 0.680

SCM [24] 0.346 0578 0358 0589 0.613 0.613 0305 0.646 0.621 0429 0.672

TLD [60] 0.557 0.428 0523 0495 0540 0588 0.349 0556 0593 0576 0.606
Precision ASLA [25] 0.255 0.496 0283 0473 0529 0521 0.156 0479 0535 0333 0.552
L1APG [59] 0367 0.425 0379 0398 0341 0524 0460 0475 0490 0329 0472
MIL [18] 0415 0456 0381 0493 0359 0465 0.171 0448 0484 0393 0471

CT [57] 0330 0339 0314 0463 0365 0361 0.152 0429 0405 0336 0.448
SRDCFdecon [40] 0.686 0597 0.704 0543 0593 0563 0.605 0585 0.606 0.643 0.633
SRDCEF [35] 0.728 0.641 0.734 0.697 0.665 0.674 0.696 0.694 0724 0734 0.694
LCT [58] 0.541 0504 0559 0537 0572 0558 0508 0525 0566 0.595 0.555
CSRDCEF [38] 0728 0859 0838 0839 0792 0.782 0.879 0.790 0.806 0.827 0.808
STAPLE [62] 0550 0.654 0553 0573 0617 0596 0530 0.581 0.624 0.621 0.593
BIT [56] 0.492 0562 0531 0498 0539 0508 0493 0546 0565 0.560 0.491
SKSCEF-Proposed 0.734 0.796¢ 0755 0.870 0.759 0.710 0.581 0.794 0.762 0.813 0.679
SKSCF_HoG_CN [13] 0.729 0.795 0.757 0.863 0.743 0.720 0.542 0.788 0.757 0.808 0.682
KSCF_HoG_CN [13] 0.629 0.741 0.689 0.779 0.649 0.690 0.389 0.696 0.697 0.705 0.540
MEEM [27] 0.706 0.747 0.692 0711 0.653 0.648 0.470 0.694 0.694 0.742 0.594
TGPR [63] 0542 0713 0570 0.711 0.632 0.601 0501 0592 0.603 0.546 0.505

KCF [32] 0.516 0.669 0539 0.668 0534 0575 0358 0593 0587 0589 0477

SCM [24] 0.348 0550 0358 0566 0586 0574 0308 0.602 0576 0449 0.635

TLD [60] 0475 0388 0485 0434 0461 0477 0327 0455 0489 0516 0.494
Success ASLA [25] 0.261 0.468 0284 0485 0514 0496 0.163 0469 0509 0359 0.544
L1APG [59] 0.359 0.404 0363 0398 0298 0.445 0.458 0437 0423 0341 0.407
MIL [18] 0353 0.414 0261 0.440 0300 0339 0.157 0378 0369 0416 0.335

CT [57] 0327 0323 0262 0420 0308 0290 0.143 0360 0325 0405 0.342
SRDCFdecon [40] 0533 0457 0558 0402 0458 0424 0447 0430 0452 0481 0.469
SRDCEF [35] 0564 0461 0591 0503 0503 0484 0463 0511 0519 0537 0.502
LCT [58] 0.413 0369 0437 0374 0398 0391 029 0371 0389 0418 0.364
CSRDCEF [38] 0592 0616 0627 0574 0585 0556 0567 0572 0573 0589 0.558
STAPLE [62] 0.437 0485 0.446 0433 0490 0440 0335 0453 0459 0467 0431
BIT [56] 0386 0392 0409 0378 0377 0368 0.285 0394 0390 0398 0.333

The bar plots in Figure 3 show a comparison of DP and AUC on all three test suits of TB-100
dataset. The Figure 3a—c show that the DP and AUC of our proposed tracker are higher than the other
recently developed trackers when tested on OTB-2013, OTB-2015, and OTB-50, respectively.

The OPE plots in Figure 2 show a comparison of precision and success rate with the recently
reported trackers. Figure 2a presents a higher precision at each location error threshold in contrast
to other trackers when tested on OTB-2013. The proposed tracker’s success rate on OTB-2013
higher except on the overlapped threshold values between 0.7 to 1 shown in Figure 2b. Figure 2c
shows the precision comparisons for various location error threshold when the tracker is evaluated
on OTB-50. The Figure 3d present the success rate vs. overlap threshold evaluated on OTB-50
test suit. Both Figure 2¢,d show the proposed tracker outperforms the state-of-the-art recently reported
work. The OPE plots in Figure 2e,f show a comparison of precision and success rate over OTB-2015
test suit. In Figure 2e,f present a higher precision and success rate on the overall range of their
respective thresholds.
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Table 3. SKSCF-Proposed descriptor comparison with other trackers on OTB-2015.

Attributes FM BC MB  DEF v IPR LR OCC OPR ov SV
SKSCF-Proposed  0.878 0.837 0.809 0.846 0.847 0.811 0.872 0.798 0.828 0.698 0.804

MBD [41] 0.780 0.783 0.757 0.813 0.765 0.801 0.808 0.783 0.816 0.713 0.799

HDT [54] 0.833 0.844 0.789 0.835 0.819 0.844 0.846 0.783 0.815 0.633 0.817

MEEM [27] 0781 0746 0731 0.786 0.746 0.794 0.631 0769 0.813 0.685 0.757
Struck [55] 0.633 0550 0577 0549 0558 0.628 0.671 0546 0.604 0.468 0.611

Precision KCF [32] 0.630 0712 0.600 0.627 0.713 0.693 0560 0.631 0.678 0.498 0.641
TLD [60] 0582 0515 0530 0515 0571 0.606 0.531 0558 0.588 0.463 0.584
CXT [61] 0568 0.444 0545 0415 0511 0599 0509 0454 0538 0388 0.538
SCM [24] 0331 0578 0269 0572 0.608 0.544 0.602 0574 0582 0425 0577
Staple [62] 0.659 0560 0.597 0.569 0.588 0.648 0.634 0.566 0.674 0.494 0.675

SRDCEF [35] 0.677 0580 0.600 0.579 0.598 0.665 0.645 0.579 0.683 0.510 0.683
SKSCF-Proposed  0.595 0.589 0.596 0.559 0.616 0.538 0.515 0.621 0.545 0.534 0.560

MBD [41] 0.595 0577 0592 0.558 0.553 0.562 0.457 0.557 0.573 0.483 0.526

HDT [54] 0.568 0578 0574 0.543 0.409 0555 0401 0528 0510 0472 0.486

MEEM [27] 0.542 0530 0522 0489 0516 0513 0367 0504 0465 .0475 0.502

Success Struck [55] 0.408 0.416 0447 0452 0373 0382 0372 0328 0389 0.333 0.374
KCF [32] 0.459 0497 0468 0436 0401 0468 0388 0443 0457 0396 0.39%

TLD [60] 0392 0438 0399 0420 0369 0355 0399 0306 0368 0300 0.349

SCM [24] 0355 0409 0442 0397 0421 0386 0407 0345 039 0432 0.406

Staple [62] 0537 0574 0546 0554 0598 0552 0422 0548 0.534 0481 0.525

SRDCEF [35] 0.597 0583 0594 0544 0613 0544 0514 0599 0550 0463 0.561

5. Conclusions

We propose robust low-rank descriptor for kernel support correlation filter. The proposed
multi-channel feature-based tracker provides favorable results on several attributes of OTB-2013,
OTB-50, and OTB-2015 test suit of the database. The low rank of the feature obtained by employing the
novel fusion and reduction approach. The accuracy and speed increased by employing the circulant
data matrix in the training procedure to the support vector machine. The results show the proposed
tracker outperforms the recently developed trackers in the case of deformation, illumination variation,
low resolution, occlusion, and out-of-view. The distance precision (DP) of the proposed tracker
at location error of 20 pixels is 2.1%, 2.9%, and 6.6% higher than the best performing trackers on
OTB-2013, OTB-50, and OTB-2015 respectively. The AUC is 4.2%, 3%, and 3.4% on OTB-2013, OTB-50,
and OTB-2015 respectively.
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