11,400 research outputs found
Sound propagation in elongated superfluid fermion clouds
We use hydrodynamic equations to study sound propagation in a superfluid
Fermi gas inside a strongly elongated cigar-shaped trap, with main attention to
the transition from the BCS to the unitary regime. We treat first the role of
the radial density profile in the quasi-onedimensional limit and then evaluate
numerically the effect of the axial confinement in a configuration in which a
hole is present in the gas density at the center of the trap. We find that in a
strongly elongated trap the speed of sound in both the BCS and the unitary
regime differs by a factor sqrt{3/5} from that in a homogeneous
three-dimensional superfluid. The predictions of the theory could be tested by
measurements of sound-wave propagation in a set-up such as that exploited by
M.R. Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic
Bose-Einstein condensate
On the origin of the helium-rich population in the peculiar globular cluster Omega Centauri
In this contribution we discuss the origin of the extreme helium-rich stars
which inhabit the blue main sequence (bMS) of the Galactic globular cluster
Omega Centauri. In a scenario where the cluster is the surviving remnant of a
dwarf galaxy ingested by the Milky Way many Gyr ago, the peculiar chemical
composition of the bMS stars can be naturally explained by considering the
effects of strong differential galactic winds, which develop owing to multiple
supernova explosions in a shallow potential well.Comment: 2 pages, 1 figure, to appear in the Proceedings of IAU Symposium No.
268, Light Elements in the Universe (C. Charbonnel, M. Tosi, F. Primas, C.
Chiappini, eds., Cambridge Univ. Press
Boson-fermion mixtures inside an elongated cigar-shaped trap
We present mean-field calculations of the equilibrium state in a gaseous
mixture of bosonic and spin-polarized fermionic atoms with repulsive or
attractive interspecies interactions, confined inside a cigar-shaped trap under
conditions such that the radial thickness of the two atomic clouds is
approaching the magnitude of the s-wave scattering lengths. In this regime the
kinetic pressure of the fermionic component is dominant. Full demixing under
repulsive boson-fermion interactions can occur only when the number of fermions
in the trap is below a threshold, and collapse under attractive interactions is
suppressed within the range of validity of the mean-field model. Specific
numerical illustrations are given for values of system parameters obtaining in
7Li-6Li clouds.Comment: 12 pages, 6 figure
Chemical abundances and properties of the ionized gas in NGC 1705
We obtained [O III] narrow-band imaging and multi-slit MXU spectroscopy of
the blue compact dwarf (BCD) galaxy NGC 1705 with FORS2@VLT to derive chemical
abundances of PNe and H II regions and, more in general, to characterize the
properties of the ionized gas. The auroral [O III]\lambda4363 line was detected
in all but one of the eleven analyzed regions, allowing for a direct estimate
of their electron temperature. The only object for which the [O III]\lambda4363
line was not detected is a possible low-ionization PN, the only one detected in
our data. For all the other regions, we derived the abundances of Nitrogen,
Oxygen, Neon, Sulfur and Argon out to ~ 1 kpc from the galaxy center. We detect
for the first time in NGC 1705 a negative radial gradient in the oxygen
metallicity of -0.24 \pm 0.08 dex kpc^{-1}. The element abundances are all
consistent with values reported in the literature for other samples of dwarf
irregular and blue compact dwarf galaxies. However, the average (central)
oxygen abundance, 12 + log(O/H)=7.96 \pm 0.04, is ~0.26 dex lower than previous
literature estimates for NGC 1705 based on the [O III]\lambda4363 line. From
classical emission-line diagnostic diagrams, we exclude a major contribution
from shock excitation. On the other hand, the radial behavior of the emission
line ratios is consistent with the progressive dilution of radiation with
increasing distance from the center of NGC 1705. This suggests that the
strongest starburst located within the central 150 pc is responsible for
the ionization of the gas out to at least 1 kpc. The gradual dilution of
the radiation with increasing distance from the center reflects the gradual and
continuous transition from the highly ionized H II regions in the proximity of
the major starburst into the diffuse ionized gas.Comment: Accepted for publication on A
Comment on ``Sound velocity and multibranch Bogoliubov spectrum of an elongated Fermi superfluid in the BEC-BCS crossover"
The work by T. K. Ghosh and K. Machida [cond-mat/0510160 and Phys. Rev. A 73,
013613 (2006)] on the sound velocity in a cylindrically confined Fermi
superfluid obeying a power-law equation of state is shown to make use of an
improper projection of the sound wave equation. This inaccuracy fully accounts
for the difference between their results and those previously reported by
Capuzzi et al. [cond-mat/0509323 and Phys. Rev. A 73, 021603(R) (2006)]. In
this Comment we show that both approaches lead exactly to the same result when
the correct weight function is used in the projection. Plots of the correct
behavior of the phonon and monopole-mode spectra in the BCS, unitary, and BEC
limits are also shown.Comment: Comment on cond-mat/051016
Transition to hydrodynamics in colliding fermion clouds
We study the transition from the collisionless to the hydrodynamic regime in
a two-component spin-polarized mixture of 40K atoms by exciting its dipolar
oscillation modes inside harmonic traps. The time evolution of the mixture is
described by the Vlasov-Landau equations and numerically solved with a fully
three-dimensional concurrent code. We observe a master/slave behaviour of the
oscillation frequencies depending on the dipolar mode that is excited.
Regardless of the initial conditions, the transition to hydrodynamics is found
to shift to lower values of the collision rate as temperature decreases.Comment: 11 pages, iop style. submitted to the proceedings of the Levico 2003
worksho
- …