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We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature
inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary
regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then
evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas
density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS
and the unitary regime differs by a factor �3/5 from that in a homogeneous three-dimensional superfluid. The
predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that
exploited by Andrews et al. �Phys. Rev. Lett. 79, 553 �1997�� for an atomic Bose-Einstein condensate.
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Strong evidence for a superfluid state in ultracold Fermi
gases near a Feshbach resonance has come from experimen-
tal studies using as probes ballistic expansion �1,2�, collec-
tive modes �3,4�, rf spectroscopy �5�, and the generation of
quantized vortices �6�. Since the BCS weak-coupling limit
and the unitary strong-coupling limit are characterized by the
same collective-mode frequencies and expansion dynamics
�7�, attention has been drawn to probes such as the cloud-size
measurements �8�, rf spectroscopy, critical temperature mea-
surements, and the study of sound-wave propagation as al-
lowing a clear identification of these two regimes. In particu-
lar Ho �9� and Heiselberg �10� have evaluated the speed of
first and second sound in a homogeneous Fermi superfluid as
functions of the coupling regime. At low temperature the first
sound velocity is given by u1=vF��1+ �2/���kFa� /3
�vF /�3 in the dilute BCS limit and by u1�0.37vF in the
unitary limit. Here vF and kF are the Fermi velocity and wave
number, while a is the s-wave scattering length.

The main purpose of this paper is to evaluate the propa-
gation of density perturbations in a superfluid Fermi gas at
zero temperature as a function of coupling strength in an
experimentally realizable setup. This simulates the setup
used in the experiments of Andrews et al. �11� on the propa-
gation of sound pulses along the axis of an elongated cloud
of Bose-Einstein condensed 23Na atoms. In their experiments
a density perturbation is generated by turning on a laser at
the center of the trap and two pulses propagate in opposite
directions along the trap axis. We describe the dynamics of
density fluctuations in the superfluid by hydrodynamic equa-
tions, namely the continuity equation

�tn + � · �nv� = 0, �1�

and the Euler equation

m�tv + ����n� + V�r� + 1
2mv2� = 0 �2�

for the time-dependent density profile n�r , t� and velocity
field v�r , t� of the trapped gas. The equation of state enters
through the density-dependent chemical potential ��n�, and
V�r� describes the external potentials. The laser beam is
simulated in our study by a time-independent effective po-
tential U�z�=U0e−z2/w2

having amplitude U0 and width w,
which is turned on at the center of the trap.

The cylindrical configuration. We discuss first the cylin-
drical configuration case corresponding to V�r�=m��

2 r�
2 /2,

where �� is the radial trap frequency. This is amenable to
analytical treatment. The equilibrium density n0�r�� is
determined from the relation ��n0�= �̄−m��

2 r�
2 /2, where �̄

is determined by the normalization condition �n0�r��d2r�

= ñ, ñ being the linear density. Linearization around
equilibrium sets n�r , t�=n0+�n�r��ei��t−qz� and ��n�
=��n0�+�� /�n�n=n0

�n�r��ei��t−qz�. Thus Eqs. �1� and �2�
lead to the eigenvalue equation

m�2�n = q2�n0 � �/�n�n=n0
�n� − �� · �n0�����/�n�n=n0

�n��
�3�

and integration in the �x ,y� plane yields the dispersion rela-
tion

� = q	 1

m

 n0 � �/�n�n=n0

�nd2r��
 �nd2r��1/2

. �4�

The lowest collective mode of the gas is obtained by taking
�n as the lowest-energy solution of Eq. �3� with q=0, i.e.,
�n�r��� ��� /�n�n=n0

�−1. Therefore the sound velocity is

u1 = 	 1

m

 n0d2r��
 ���/�n�n=n0�−1d2r��1/2

. �5�

Equation �5� applies to all gases in cylindrical geometries
which can be described by hydrodynamic equations.

For a power-law form of the equation of state,
��n�=Cn�, the equilibrium density profile takes the explicit
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form n0�r��= ��̄ /C�1/��1−r�
2 /RTF

2 �1/� where RTF=�2�̄ /m��
2

is the radial size of the cloud. Equation �5� then reduces to

u1
2 =

��̄

�1 + ��m
. �6�

For �=1, Eq. �6� gives the speed of sound pulses propagat-
ing along the axis of a cylindrical condensate of bosonic
atoms �12� or of molecular bosons formed by pairs of
fermionic atoms. In the latter case, the mixture approaches
the Bose-Einstein condensation �BEC� limit with a sound
velocity uBEC= ��n0aM /2�1/2� /m, with aM the molecular
scattering length aM �0.6a �13�. For a Fermi gas in the BCS
�kF �a � 	1� and the unitary �kF �a � 
1� regime the equation
of state is, instead, proportional to the Fermi energy
��2 /2m��3�2n�2/3, so that �=2/3 and u1=�2�̄ /5m. In the
former limit at very low temperatures �̄=mvF

2 /2 and
u1=vF /�5, while in the latter �̄=m�1+��vF

2 /2 with � being
a negative constant as a consequence of the strong attractive
interactions as previously evaluated in several approaches
�14�. In fact, because of the attraction between the two com-
ponents, one component drags the other along, causing the
perturbation to slow down with respect to the noninteracting
case. Quantum Monte Carlo calculations find ��−0.57
�15,16� and then u1�0.29vF. These velocities thus differ by
a factor �3/5 from those in the homogeneous Fermi gas �10�
and would be measured in a sound propagation experiment
through the central portion of a strongly elongated trap. It is
worth noticing that these results differ from what a one-
dimensional �1D� calculation would predict: in the latter it is
straightforward to show that u1=���̄ /m, i.e., u1=vF for a
strictly 1D hydrodynamic Fermi gas.

At intermediate couplings, when kF �a� is finite, C depends
on the density, and several forms of the equation of state
have been proposed �14,17,18�. A possible solution is to use
again a power law with an effective exponent �, which may
be inferred from a measured collective mode frequency �7�.
The effective value of C can instead be determined from the
cloud size. In this work we focus on a gas with a negative
scattering length and choose the equation of state given by
Heiselberg in the Galitskii approximation �14�. This is

��n� =
�2

2m
�3�2n�2/31 +

c1n1/3

1 − c2n1/3	2 +
c2n1/3

3�1 − c2n1/3��� ,

�7�

with c1=2a / �9��1/3 giving the mean-field contribution and
c2=6�11−2 ln 2��3�2�1/3a / �35�� the second-order contribu-
tion from the ladder diagrams, which takes into account the
opening of the superfluid gap. Equation �7� reproduces the
result �=m�1+4akF / �3���vF

2 /2 in the limit of a dilute sys-
tem, and is approximately valid at intermediate densities in
the unitary limit where it gives m�1+��vF

2 /2. The ratio be-
tween c1 and c2 in this case yields ��−0.67. The results for
the sound velocity as obtained from a self-consistent evalu-
ation of the chemical potential and of the equilibrium density
are shown in Fig. 1. In this calculation, we have taken a
linear density ñ corresponding to the chemical potential of
2�103 fermions in a cigar-shaped confinement with trap fre-

quencies ��=100 s−1 and �z=6.3 s−1 �see below�. The BCS
and unitary limits are recovered for a→0− and a→−, re-
spectively. The dashed line in Fig. 1 shows the sound veloc-
ity obtained within the mean-field model for a dilute Fermi
gas by setting c2=0 in Eq. �7�. The mean-field model well
describes the BCS limit, but as the coupling increases it pre-
dicts a strong drop of the sound velocity heralding collapse.
The location and width of the transition from the BCS to the
unitary regime are determined by the system parameters.

Effect of axial potentials. A weak harmonic confinement
along the z direction induces a smooth inhomogeneity in the
axial density profile, which can be treated within a local
density approximation. Assuming again a power-law equa-
tion of state, Eq. �5� leads to the velocity field

v1�z� = 	 �̄

m

�

1 + �
�1/2	1 −

z2

ZTF
2 �1/2

, �8�

with ZTF=�2�̄ /m�z
2, which corresponds to an oscillatory

motion with frequency �=�z /�2+2/� and velocity u1 at the
center of the trap. Even though u1 depends on C, the oscilla-
tion frequency is the same in the BCS and in the unitary
limit, since the product between the wave number
q�1/ZTF��1/ �̄ and the velocity u1���̄ does not depend
on the chemical potential.

We next carry out a numerical study of sound propagation
using the hydrodynamic Eqs. �1� and �2� in a setup simulat-
ing that used in the experiments of Andrews et al. �11�. In
addition to radial and axial confinements provided by a
strongly elongated harmonic trap, we switch on a hole-
digging potential U�z� at the center of the trap. The atoms are
thereby expelled into two density perturbations that travel
towards the ends of the trap. Since the perturbation velocity
is mainly in the z direction and imaging techniques will pro-
vide column densities, we focus on the evolution of the ra-
dially integrated density profile ñ�z�. The numerical calcula-
tions are carried out for a system of N=2�103 40K atoms
equally distributed in two spin-polarized states, with trap fre-

FIG. 1. Speed of sound u1 in a cylindrical Fermi gas �in units of
the Fermi velocity vF� as a function of 1/kF �a� �on a logarithmic
scale�. The full and the dashed lines are the results from the equa-
tion of state, �7�, and from the mean-field �MF� model, respectively.
The dot-dashed lines mark the BCS �upper� and the unitary �lower�
limits.
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quencies ��=100 s−1 and �z=6.3 s−1. The potential U�z�
has a width w equal to 5% of the axial width of the density
profile and an amplitude U0 of magnitude up to ��z. In Fig.
2 we illustrate the time evolution of ñ�z� for three values of
the scattering length, a=−80, −105, and −106 Bohr radii. The
size of the cloud decreases on increasing the coupling
strength and at the same time the speed of the density per-
turbation also decreases.

From the evolution of the integrated density we calculate
the mean velocity �vz� of the perturbation in a time interval
�t=5/��. The results for �vz� as a function of the coupling
strength and for two amplitudes of the perturbing potential
are shown in Fig. 3. The comparison is also illustrated
between the case with ���z /���0.06 and that with
�=0.01 at the same zero-coupling Fermi velocity. For weak
perturbations �for example U0=0.16��z, full symbols in Fig.
3�, giving �n of the order of a few percent of the equilibrium
density at the trap center, the speed of sound for both values
of � is found to be in good agreement with the theoretical

prediction given in Eq. �5� for the cylindrical gas �thick,
solid line�. The slight difference seen in Fig. 3 may be ac-
counted for by the effect of the weak confinement causing
the speed of sound to decrease while the density perturbation
moves away from the central region of the trap �see Eq. �8��.
Beyond the perturbative regime �empty symbols in Fig. 3,
referring to U0=0.8��z and �n /n0�20%� we find an up-
ward shift of the mean velocity as a result of the increase in
the local density. The overall behavior of �vz� is still the same
as in the perturbative regime. The ratio between the values at
zero and large �a� is about 0.61, to be compared with
�1+��0.57 for both the gas with �=0 and the homoge-
neous gas.

Finally, we compare in Fig. 4 the sound velocity for
��0.06 in a superfluid Fermi gas at T=0 with that in a
normal Fermi gas at a temperature T=0.2TF, TF being the
Fermi temperature at zero coupling. The dynamics of the
normal gas has been studied by the Vlasov-Landau kinetic
equations �19� for the one-body distribution functions of the
two species, and within this framework any pairing is ne-
glected. Our method involves binary collisions between the
particles and includes Pauli-blocking effects. At low cou-
pling the normal Fermi mixture is in the collisionless zero-
sound regime and sound propagation is associated with an
anisotropic deformation of the Fermi surface, the zero-sound
velocity being close to vF as shown in Fig. 4. With increasing
attractions the velocity of the perturbation drops. This drop
occurs at about a�−104a0 corresponding to 1/kF �a � �1.5,
and can be attributed to both the transition towards the first-
sound velocity vF /�5 and the instability of the approaching
collapse of the normal state. The transition to the superfluid
state restores stability. As the transition point depends on the
collisionality of the system, by increasing the number of par-
ticles we expect the drop to occur at a�−104a0 although the
overall behavior of the transition remains the same.

In summary, we have studied sound propagation in a su-
perfluid Fermi gas confined inside a strongly elongated har-

FIG. 2. Integrated density profile ñ �in arbitrary units� as a func-
tion of axial coordinate z �in units of a�= �� / �m����1/2� at different
times starting from the bottom at t=0 and increasingly separated
by 1.5/��. The left, middle, and right panel correspond to
a /a0=−80, −105, and −106. For the sake of visibility the plotting
range is smaller than the full extent of the density profile.

FIG. 3. Sound velocity in a superfluid Fermi gas as a function of
1/kF �a� �on a logarithmic scale�. Circles and squares correspond to
the average speed of perturbations propagating in a trap with
��0.06 and �=0.01. Empty and full symbols refer to
U0 /��z=0.8 and 0.16, respectively. The thick solid line is from Eq.
�5�, and the dot-dashed lines mark the BCS �upper� and unitary
�lower� limits. The thin solid lines are guides to the eye.

FIG. 4. Sound velocity in an elongated trap as a function of
1/kF �a� �on a logarithmic scale�. Circles and squares are for a su-
perfluid at T=0 and for a normal Fermi gas at T=0.2TF, respec-
tively. The error bars for the normal-gas results are from the stan-
dard deviation in the velocity distributions. The dot-dashed lines
show the zero-sound, the BCS, and the unitary limits, from top to
bottom.
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monic trap. We have found that the sound velocity dimin-
ishes as the superfluid goes from the BCS to the unitary
regime on increasing the strength of the attractions between
the atoms, and that in both limits the speed of sound
differs by a factor �3/5 from that in the superfluid
three-dimensional gas. The numerical study of the superfluid
gas dynamics in a weak axial confinement shows that the
value of the speed of sound around in the central region of
the trap is close to that in the cylindrical gas. However, in

situations of experimental relevance, a density
perturbation of order 20% could give rise to upward shifts of
the speed of sound by 10–12 %. These effects could be ob-
served in experimental setups of trapped superfluid Fermi
gases and thereby provide further insight in their superfluid
state.
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