12,992 research outputs found

    SLE-type growth processes and the Yang-Lee singularity

    Full text link
    The recently introduced SLE growth processes are based on conformal maps from an open and simply-connected subset of the upper half-plane to the half-plane itself. We generalize this by considering a hierarchy of stochastic evolutions mapping open and simply-connected subsets of smaller and smaller fractions of the upper half-plane to these fractions themselves. The evolutions are all driven by one-dimensional Brownian motion. Ordinary SLE appears at grade one in the hierarchy. At grade two we find a direct correspondence to conformal field theory through the explicit construction of a level-four null vector in a highest-weight module of the Virasoro algebra. This conformal field theory has central charge c=-22/5 and is associated to the Yang-Lee singularity. Our construction may thus offer a novel description of this statistical model.Comment: 12 pages, LaTeX, v2: thorough revision with corrections, v3: version to be publishe

    Note on SLE and logarithmic CFT

    Full text link
    It is discussed how stochastic evolutions may be linked to logarithmic conformal field theory. This introduces an extension of the stochastic Loewner evolutions. Based on the existence of a logarithmic null vector in an indecomposable highest-weight module of the Virasoro algebra, the representation theory of the logarithmic conformal field theory is related to entities conserved in mean under the stochastic process.Comment: 10 pages, LaTeX, v2: version to be publishe

    Measuring the effect of whalewatching boats on minke whale behavioural budget using a multivariate hidden Markov model

    Full text link
    Human disturbances of wildlife, such as tourism, can alter the activities of targeted individuals. Repeated behavioural disruptions can have long-term consequences on individual's vital rates. To manage these sub-lethal impacts, we need to understand how activity disruptions can influence variation in individual's vital rates. This study informs the mechanistic links between whalewatching boat exposure and behavioural variation and vital rates for Mysticetes. We compared Minke whale Balaenoptera acutorostrata behaviour on a feeding ground in the presence and absence of whalewatching boats in Iceland, using individual focal follows. Activity states were inferred from movement metric data and multi-state models were used to estimate the relative proportion of different activity states. Spatially explicit mark-recapture models were used to estimate the seasonal exposure rate of individual whales to whalewatching activities. Whalewatching interactions disrupted the foraging behaviour of Minke whales, causing a decrease in proportion of time whales spent foraging. The cumulative exposure was sufficiently large to cause changes in the animal's seasonal behavioural budget. Minke whales are capital breeders, so a decrease in foraging success on feeding grounds due to whalewatching could lead to a decrease in energy available for lactation on breeding grounds, which could have negative effects on calf survival

    Distributed computing system with dual independent communications paths between computers and employing split tokens

    Get PDF
    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided

    Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition

    Get PDF
    A number of nonlinear models have recently been proposed for simulating soil carbon decomposition. Their predictions of soil carbon responses to fresh litter input and warming differ significantly from conventional linear models. Using both stability analysis and numerical simulations, we showed that two of those nonlinear models (a two-pool model and a three-pool model) exhibit damped oscillatory responses to small perturbations. Stability analysis showed the frequency of oscillation is proportional to √(ε⁻¹-1) Ks/Vs in the two-pool model, and to √(ε⁻¹-1) Kl/Vl in the three-pool model, where ε is microbial growth efficiency, Ks and Kl are the half saturation constants of soil and litter carbon, respectively, and /Vs and /Vl are the maximal rates of carbon decomposition per unit of microbial biomass for soil and litter carbon, respectively. For both models, the oscillation has a period of between 5 and 15 years depending on other parameter values, and has smaller amplitude at soil temperatures between 0 and 15°C. In addition, the equilibrium pool sizes of litter or soil carbon are insensitive to carbon inputs in the nonlinear model, but are proportional to carbon input in the conventional linear model. Under warming, the microbial biomass and litter carbon pools simulated by the nonlinear models can increase or decrease, depending whether ε varies with temperature. In contrast, the conventional linear models always simulate a decrease in both microbial and litter carbon pools with warming. Based on the evidence available, we concluded that the oscillatory behavior and insensitivity of soil carbon to carbon input are notable features in these nonlinear models that are somewhat unrealistic. We recommend that a better model for capturing the soil carbon dynamics over decadal to centennial timescales would combine the sensitivity of the conventional models to carbon influx with the flexible response to warming of the nonlinear model.15 page(s

    Electron transport in single wall carbon nanotube weak links in the Fabry-Perot regime

    Full text link
    We fabricated reproducible high transparency superconducting contacts consisting of superconducting Ti/Al/Ti trilayers to gated single-walled carbon nanotubes (SWCNTs). The reported semiconducting SWCNT have normal state differential conductance up to 3e2/h3e^2/h and exhibit clear Fabry-Perot interference patterns in the bias spectroscopy plot. We observed subharmonic gap structure in the differential conductance and a distinct peak in the conductance at zero bias which is interpreted as a manifestation of a supercurrent. The gate dependence of this supercurrent as well as the excess current are examined and compared to a coherent theory of superconducting point contacts with good agreement.Comment: 10 pages, 4 figure

    Improved Collective Thomson Scattering measurements of fast ions at ASDEX Upgrade

    Full text link
    Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.Comment: 4 pages, 4 figures, to appear in Proc. of "Fusion Reactor Diagnostics", eds. F. P. Orsitto et al., AIP Conf. Pro

    Structurally specific thermal fluctuations identify functional sites for DNA transcription

    Full text link
    We report results showing that thermally-induced openings of double stranded DNA coincide with the location of functionally relevant sites for transcription. Investigating both viral and bacterial DNA gene promoter segments, we found that the most probable opening occurs at the transcription start site. Minor openings appear to be related to other regulatory sites. Our results suggest that coherent thermal fluctuations play an important role in the initiation of transcription. Essential elements of the dynamics, in addition to sequence specificity, are nonlinearity and entropy, provided by local base-pair constraints
    corecore