3,646 research outputs found
Systematic Errors in Cosmic Microwave Background Interferometry
Cosmic microwave background (CMB) polarization observations will require
superb control of systematic errors in order to achieve their full scientific
potential, particularly in the case of attempts to detect the B modes that may
provide a window on inflation. Interferometry may be a promising way to achieve
these goals. This paper presents a formalism for characterizing the effects of
a variety of systematic errors on interferometric CMB polarization
observations, with particular emphasis on estimates of the B-mode power
spectrum. The most severe errors are those that couple the temperature
anisotropy signal to polarization; such errors include cross-talk within
detectors, misalignment of polarizers, and cross-polarization. In a B mode
experiment, the next most serious category of errors are those that mix E and B
modes, such as gain fluctuations, pointing errors, and beam shape errors. The
paper also indicates which sources of error may cause circular polarization
(e.g., from foregrounds) to contaminate the cosmologically interesting linear
polarization channels, and conversely whether monitoring of the circular
polarization channels may yield useful information about the errors themselves.
For all the sources of error considered, estimates of the level of control that
will be required for both E and B mode experiments are provided. Both
experiments that interfere linear polarizations and those that interfere
circular polarizations are considered. The fact that circular experiments
simultaneously measure both linear polarization Stokes parameters in each
baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.
Mosaicking with cosmic microwave background interferometers
Measurements of cosmic microwave background (CMB) anisotropies by
interferometers offer several advantages over single-dish observations. The
formalism for analyzing interferometer CMB data is well developed in the
flat-sky approximation, valid for small fields of view. As the area of sky is
increased to obtain finer spectral resolution, this approximation needs to be
relaxed. We extend the formalism for CMB interferometry, including both
temperature and polarization, to mosaics of observations covering arbitrarily
large areas of the sky, with each individual pointing lying within the flat-sky
approximation. We present a method for computing the correlation between
visibilities with arbitrary pointing centers and baselines and illustrate the
effects of sky curvature on the l-space resolution that can be obtained from a
mosaic.Comment: 9 pages; submitted to Ap
Self-field effects upon the critical current density of flat superconducting strips
We develop a general theory to account self-consistently for self-field
effects upon the average transport critical current density Jc of a flat
type-II superconducting strip in the mixed state when the bulk pinning is
characterized by a field-dependent depinning critical current density Jp(B),
where B is the local magnetic flux density. We first consider the possibility
of both bulk and edge-pinning contributions but conclude that bulk pinning
dominates over geometrical edge-barrier effects in state-of-the-art YBCO films
and prototype second-generation coated conductors. We apply our theory using
the Kim model, JpK(B) = JpK(0)/(1+|B|/B0), as an example. We calculate Jc(Ba)
as a function of a perpendicular applied magnetic induction Ba and show how
Jc(Ba) is related to JpK(B). We find that Jc(Ba) is very nearly equal to
JpK(Ba) when Ba > Ba*, where Ba* is the value of Ba that makes the net flux
density zero at the strip's edge. However, Jc(Ba) is suppressed relative to
JpK(Ba) at low fields when Ba < Ba*, with the largest suppression occurring
when Ba*/B0 is of order unity or larger.Comment: 9 pages, 4 figures, minor revisions to add four reference
Monkeypox: another test for PCR
Monkeypox was declared a public health emergency of international concern by the World Health Organization (WHO) on 23 July 2022. Between 1 January and 23 July 2022, 16,016 laboratory confirmed cases of monkeypox and five deaths were reported to WHO from 75 countries on all continents. Public health authorities are proactively identifying cases and tracing their contacts to contain its spread. As with COVID-19, PCR is the only method capable of being deployed at sufficient speed to provide timely feedback on any public health interventions. However, at this point, there is little information on how those PCR assays are being standardised between laboratories. A likely reason is that testing is still limited on a global scale and that detection, not quantification, of monkeypox virus DNA is the main clinical requirement. Yet we should not be complacent about PCR performance. As testing requirements increase rapidly and specimens become more diverse, it would be prudent to ensure PCR accuracy from the outset to support harmonisation and ease regulatory conformance. Lessons from COVID-19 should aid implementation with appropriate material, documentary and methodological standards offering dynamic mechanisms to ensure testing that most accurately guides public health decisions
A microfabricated sensor for thin dielectric layers
We describe a sensor for the measurement of thin dielectric layers capable of
operation in a variety of environments. The sensor is obtained by
microfabricating a capacitor with interleaved aluminum fingers, exposed to the
dielectric to be measured. In particular, the device can measure thin layers of
solid frozen from a liquid or gaseous medium. Sensitivity to single atomic
layers is achievable in many configurations and, by utilizing fast, high
sensitivity capacitance read out in a feedback system onto environmental
parameters, coatings of few layers can be dynamically maintained. We discuss
the design, read out and calibration of several versions of the device
optimized in different ways. We specifically dwell on the case in which
atomically thin solid xenon layers are grown and stabilized, in cryogenic
conditions, from a liquid xenon bath
Unsettling sustainability: the poetics of discomfort
peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=rgrl2
Apneusis responding to buspirone in multiple sclerosis
Apneusis is a disturbance of respiratory rhythm characterized by severely prolonged inspiratory effort, and is caused by bilateral lesions in the dorsal pons. In humans it is most commonly caused by pontine infarction and has rarely been reported in multiple sclerosis (MS). Here we report on a patient with MS who developed episodic apneusis which responded to treatment with buspirone, a serotonin type 1A receptor agonist
The Future of U.S. Natural Gas Production, Use, and Trade
Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/)Two computable general equilibrium models, one global and the other providing U.S. regional detail, are applied to analysis of the future of U.S. natural gas as an input to an MIT study of the topic. The focus is on uncertainties including the scale and cost of gas resources, the costs of competing technologies, the pattern of greenhouse gas mitigation, and the evolution of global natural gas markets. Results show that the outlook for gas over the next several decades is very favorable. In electric generation, given the unproven and relatively high cost of other low-carbon generation alternatives, gas likely is the preferred alternative to coal. A broad GHG pricing policy would increase gas use in generation but reduce use in other sectors, on a balance increasing its role from present levels. The shale gas resource is a major contributor to this optimistic view of the future of gas, but it is far from a panacea over the longer term. Gas can be an effective bridge to a lower emissions future, but investment in the development of still lower CO2 technologies remains an important priority. Also, international gas resources may well prove to be less costly than those in the U.S., except for the lowest-cost domestic shale resources, and the emergence of an integrated global gas market could result in significant U.S. gas imports.American Clean Skies Foundation, with additional support
from the Hess Corporation, the Agencia Nacional de Hidrocarburos (Columbia), the Energy
Futures Coalition, and the MIT Energy Initiative
Purposes, concepts, misfits, and a redesign of git
Git is a widely used version control system that is powerful but complicated. Its complexity may not be an inevitable consequence of its power but rather evidence of flaws in its design. To explore this hypothesis, we analyzed the design of Git using a theory that identifies concepts, purposes, and misfits. Some well-known difficulties with Git are described, and explained as misfits in which underlying concepts fail to meet their intended purpose. Based on this analysis, we designed a reworking of Git (called Gitless) that attempts to
remedy these flaws. To correlate misfits with issues reported by users, we
conducted a study of Stack Overflow questions. And to determine whether users experienced fewer complications using Gitless in place of Git, we conducted a small user study. Results suggest our approach can be profitable in identifying, analyzing, and fixing design problems.SUTD-MIT International Design Centre (IDC
QUBIC: The QU Bolometric Interferometer for Cosmology
One of the major challenges of modern cosmology is the detection of B-mode
polarization anisotropies in the CMB. These originate from tensor fluctuations
of the metric produced during the inflationary phase. Their detection would
therefore constitute a major step towards understanding the primordial
Universe. The expected level of these anisotropies is however so small that it
requires a new generation of instruments with high sensitivity and extremely
good control of systematic effects. We propose the QUBIC instrument based on
the novel concept of bolometric interferometry, bringing together the
sensitivity advantages of bolometric detectors with the systematics effects
advantages of interferometry. Methods: The instrument will directly observe the
sky through an array of entry horns whose signals will be combined together
using an optical combiner. The whole set-up is located inside a cryostat.
Polarization modulation will be achieved using a rotating half-wave plate and
interference fringes will be imaged on two focal planes (separated by a
polarizing grid) tiled with bolometers. We show that QUBIC can be considered as
a synthetic imager, exactly similar to a usual imager but with a synthesized
beam formed by the array of entry horns. Scanning the sky provides an
additional modulation of the signal and improve the sky coverage shape. The
usual techniques of map-making and power spectrum estimation can then be
applied. We show that the sensitivity of such an instrument is comparable with
that of an imager with the same number of horns. We anticipate a low level of
beam-related systematics thanks to the fact that the synthesized beam is
determined by the location of the primary horns. Other systematics should be
under good control thanks to an autocalibration technique, specific to our
concept, that will permit the accurate determination of most of the systematics
parameters.Comment: 12 pages, 10 figures, submitted to Astronomy and Astrophysic
- …