304 research outputs found

    A modified R1 X R1 method for helioseismic rotation inversions

    Full text link
    We present an efficient method for two dimensional inversions for the solar rotation rate using the Subtractive Optimally Localized Averages (SOLA) method and a modification of the R1 X R1 technique proposed by Sekii (1993). The SOLA method is based on explicit construction of averaging kernels similar to the Backus-Gilbert method. The versatility and reliability of the SOLA method in reproducing a target form for the averaging kernel, in combination with the idea of the R1 X R1 decomposition, results in a computationally very efficient inversion algorithm. This is particularly important for full 2-D inversions of helioseismic data in which the number of modes runs into at least tens of thousands.Comment: 12 pages, Plain TeX + epsf.tex + mn.te

    Structure of the near-surface layers of the Sun: asphericity and time variation

    Get PDF
    We present results on the structure of the near-surface layers of the Sun obtained by inverting frequencies of high-degree solar modes from "ring diagrams". We have results for eight epochs between June 1996 and October 2003. The frequencies for each epoch were obtained from ring diagrams constructed from MDI Dopplergrams spanning complete Carrington rotations. We find that there is a substantial latitudinal variation of both sound speed and the adiabatic index Gamma_1 in the outer 2% of the Sun. We find that both the sound-speed and Gamma_1 profiles change with changes in the level of solar activity. In addition, we also study differences between the northern and southern hemispheres of the Sun and find a small asymmetry that appears to reflect the difference in magnetic activity between the two hemispheres.Comment: To appear in ApJ (January 2007

    A Detailed Analysis of the Dust Formation Zone of IRC+10216 Derived from Mid-IR Bands of C2H2 and HCN

    Get PDF
    A spectral survey of IRC+10216 has been carried out in the range 11 to 14 um with a spectral resolution of about 4 km s^-1. We have identified a forest of lines in six bands of C2H2 involving the vibrational states from the ground to 3nu5 and in two bands of HCN, involving the vibrational states from the ground up to 2nu2. Some of these transitions are observed also in H13CCH and H13CN. We have estimated the kinetic, vibrational, and rotational temperatures, and the abundances and column densities of C2H2 and HCN between 1 and 300 R* (1.5E16 cm) by fitting about 300 of these ro-vibrational lines. The envelope can be divided into three regions with approximate boundaries at 0.019 arcsec (the stellar photosphere), 0.1 arcsec (the inner dust formation zone), and 0.4 arcsec (outer dust formation zone). Most of the lines might require a large microturbulence broadening. The derived abundances of C2H2 and HCN increase by factors of 10 and 4, respectively, from the innermost envelope outwards. The derived column densities for both C2H2 and HCN are 1.6E19 cm^-2. Vibrational states up to 3000 K above ground are populated, suggesting pumping by near-infrared radiation from the star and innermost envelope. Low rotational levels can be considered under LTE while those with J>20-30 are not thermalized. A few lines require special analysis to deal with effects like overlap with lines of other molecules.Comment: 8 pages, 16 figures, 2 machine-readable tables, accepted in the Astrophysical Journa

    10,000 Standard Solar Models: a Monte Carlo Simulation

    Full text link
    We have evolved 10,000 solar models using 21 input parameters that are randomly drawn for each model from separate probability distributions for every parameter. We use the results of these models to determine the theoretical uncertainties in the predicted surface helium abundance, the profile of the sound speed versus radius, the profile of the density versus radius, the depth of the solar convective zone, the eight principal solar neutrino fluxes, and the fractions of nuclear reactions that occur in the CNO cycle or in the three branches of the p-p chains. We also determine the correlation coefficients of the neutrino fluxes for use in analysis of solar neutrino oscillations. Our calculations include the most accurate available input parameters, including radiative opacity, equation of state, and nuclear cross sections. We incorporate both the recently determined heavy element abundances recommended by Asplund, Grevesse & Sauval (2005) and the older (higher) heavy element abundances recommended by Grevesse & Sauval (1998). We present best-estimates of many characteristics of the standard solar model for both sets of recommended heavy element compositions.Comment: ** John N. Bahcall passed away on August 17, 2005. Manuscript has 60 pages including 10 figure

    Probing Turbulence with Infrared Observations in OMC1

    Full text link
    A statistical analysis is presented of the turbulent velocity structure in the Orion Molecular Cloud at scales ranging from 70 AU to 30000 AU. Results are based on IR Fabry-Perot interferometric observations of shock and photon-excited H2 in the K-band S(1) v=1-0 line at 2.121micron and refer to the dynamical characteristics of warm perturbed gas. Observations establish that the Larson size-linewidth relation is obeyed to the smallest scales studied here extending the range of validity of this relationship by nearly 2 orders of magnitude. The velocity probability distribution function (PDF) is constructed showing extended exponential wings, providing evidence of intermittency, further supported by the skewness and kurtosis of the velocity distribution. Variance and kurtosis of the PDF of velocity differences are constructed as a function of lag. The variance shows an approximate power law dependence on lag, with exponent significantly lower than the Kolmogorov value, and with deviations below 2000AU which are attributed to outflows and possibly disk structures associated with low mass star formation within OMC1. The kurtosis shows strong deviation from a gaussian velocity field, providing evidence of velocity correlations at small lags. Results agree accurately with semi-empirical simulations in Eggers & Wang (1998). In addition, 170 individual H2 emitting clumps have been analysed with sizes between 500 and 2200 AU. These show considerable diversity with regard to PDFs and variance functions. Our analysis constitutes the first characterization of the turbulent velocity field at the scale of star formation and provide a dataset which models of star-forming regions should aim to reproduce.Comment: 17 pages, 11 figures, to appear in A&A, typos correcte

    Helioseismological Implications of Recent Solar Abundance Determinations

    Full text link
    We show that standard solar models are in good agreement with the helioseismologically determined sound speed and density as a function of solar radius, the depth of the convective zone, and the surface helium abundance, as long as those models do not incorporate the most recent heavy element abundance determinations. However, sophisticated new analyses of the solar atmosphere infer lower abundances of the lighter metals (like C, N, O, Ne, and Ar) than the previously widely used surface abundances. We show that solar models that include the lower heavy element abundances disagree with the solar profiles of sound speed and density as well as the depth of the convective zone and the helium abundance. The disagreements for models with the new abundances range from factors of several to many times the quoted uncertainties in the helioseismological measurements. The disagreements are at temperatures below what is required for solar interior fusion reactions and therefore do not significantly affect solar neutrino emission. If errors in thecalculated OPAL opacities are solely responsible for the disagreements, then the corrections in the opacity must extend from 2 times 10^6 K (R = 0.7R_Sun)to 5 times 10^6 K (R = 0.4 R_Sun), with opacity increases of order 10%.Comment: ApJ in press; clarified Figure

    An optical time-delay estimate for the double gravitational lens system B1600+434

    Get PDF
    We present optical I-band light curves of the gravitationally lensed double QSO B1600+434 from observations obtained at the Nordic Optical Telescope (NOT) between April 1998 and November 1999. The photometry has been performed by simultaneous deconvolution of all the data frames, involving a numerical lens galaxy model. Four methods have been applied to determine the time delay between the two QSO components, giving a mean estimate of \Delta_t = 51+/-4 days (95% confidence level). This is the fourth optical time delay ever measured. Adopting a Omega=0.3, Lambda=0 Universe and using the mass model of Maller et al. (2000), this time-delay estimate yields a Hubble parameter of H_0=52 (+14, -8) km s^-1 Mpc^-1 (95% confidence level) where the errors include time-delay as well as model uncertainties. There are time-dependent offsets between the two (appropriately shifted) light curves that indicate the presence of external variations due to microlensing.Comment: 15 pages, 4 figures, accepted for publication in Ap

    New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant

    Get PDF
    The gravitational lens 0957+561 is modeled utilizing recent observations of the galaxy and the cluster as well as previous VLBI radio data which have been re-analyzed recently. The galaxy is modeled by a power-law elliptical mass density with a small core while the cluster is modeled by a non-singular power-law sphere as indicated by recent observations. Using all of the current available data, the best-fit model has a reduced chi-squared of approximately 6 where the chi-squared value is dominated by a small portion of the observational constraints used; this value of the reduced chi-squared is similar to that of the recent FGSE best-fit model by Barkana et al. However, the derived value of the Hubble constant is significantly different from the value derived from the FGSE model. We find that the value of the Hubble constant is given by H_0 = 69 +18/-12 (1-K) and 74 +18/-17 (1-K) km/s/Mpc with and without a constraint on the cluster's mass, respectively, where K is the convergence of the cluster at the position of the galaxy and the range for each value is defined by Delta chi-squared = reduced chi-squared. Presently, the best achievable fit for this system is not as good as for PG 1115+080, which also has recently been used to constrain the Hubble constant, and the degeneracy is large. Possibilities for improving the fit and reducing the degeneracy are discussed.Comment: 22 pages in aaspp style including 6 tables and 5 figures, ApJ in press (Nov. 1st issue

    On the Reliability of Cross Correlation Function Lag Determinations in Active Galactic Nuclei

    Full text link
    Many AGN exhibit a highly variable luminosity. Some AGN also show a pronounced time delay between variations seen in their optical continuum and in their emission lines. In effect, the emission lines are light echoes of the continuum. This light travel-time delay provides a characteristic radius of the region producing the emission lines. The cross correlation function (CCF) is the standard tool used to measure the time lag between the continuum and line variations. For the few well-sampled AGN, the lag ranges from 1-100 days, depending upon which line is used and the luminosity of the AGN. In the best sampled AGN, NGC 5548, the H_beta lag shows year-to-year changes, ranging from about 8.7 days to about 22.9 days over a span of 8 years. In this paper it is demonstrated that, in the context of AGN variability studies, the lag estimate using the CCF is biased too low and subject to a large variance. Thus the year-to-year changes of the measured lag in NGC 5548 do not necessarily imply changes in the AGN structure. The bias and large variance are consequences of finite duration sampling and the dominance of long timescale trends in the light curves, not due to noise or irregular sampling. Lag estimates can be substantially improved by removing low frequency power from the light curves prior to computing the CCF.Comment: To appear in the PASP, vol 111, 1999 Nov; 37 pages; 10 figure

    Asteroseismology across the HR diagram

    Get PDF
    High precision spectroscopy provides essential information necessary to fully exploit the opportunity of probing the internal structure of stars using Asteroseismology. In this work we discuss how Asteroseismology combined with High Precision Spectroscopy can establish a detailed view on stellar structure and evolution of stars across the HR diagramme.Comment: 6 pages, 2 figures - to appear in Precision Spectroscopy in Astrophysics, (Eds) L. Pasquini, M. Romaniello, N.C. Santos, and A. Correia, ESO Astrophysics Symposia, 200
    corecore