7 research outputs found

    Novae in the SuperWASP data base

    Full text link
    We present the results of trawling through the SuperWASP data base for classical and recurrent novae. We report light curves for a nova in eruption, and for classical novae and a recurrent nova in quiescence. For five objects in quiescence, we report periodicity, arising in most cases from orbital modulation of the light from the cool secondary star. The stability of the SuperWASP system means that these data have huge potential for the study not only of novae in eruption, but also of the long-term modulations of light during quiescence

    X-RAY FLASHES IN RECURRENT NOVAE: M31N 2008-12a AND THE IMPLICATIONS OF THE SWIFT NONDETECTION

    Full text link
    Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 M⊙{M}_{\odot } and for two recurrence periods of 0.5 and 1 yr. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hr (0.6 days) among the four cases is obtained for the 1.385 M⊙1.385\,{M}_{\odot } WD with a 1 yr recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 yr recurrence period), which resulted in the nondetection of X-ray emission during the period of 8 days before the optical detection. We discuss the impact of these observations on nova outburst theory. The X-ray flash is one of the last frontiers of nova studies, and its detection is essential for understanding the pre-optical-maximum phase. We encourage further observations

    PAN-CHROMATIC OBSERVATIONS OF THE RECURRENT NOVA LMC 2009a (LMC 1971b)

    Get PDF
    Nova LMC 2009a is confirmed as a recurrent nova (RN) from positional coincidence with nova LMC 1971b. The observational data set is one of the most comprehensive for any Galactic or extragalactic RN: optical and near-IR photometry from outburst until over 6 years later; optical spectra for the first 6 months, and Swift satellite ultraviolet (UV) and X-ray observations from 9 days to almost 1 year post-outburst. We find MV = −8.4 ± 0.8r ± 0.7s and expansion velocities between 1000 and 4000 km s−1. Coronal line emission before day 9 indicates shocks in the ejecta. Strengthening of He iiλ4686 preceded the emergence of the super-soft source (SSS) in X-rays at ~63–70 days, which was initially very variable. Periodic modulations, P = 1.2 days, most probably orbital in nature, were evident in the UV and optical from day 43. Subsequently, the SSS shows an oscillation with the same period but with a delay of 0.28P. The progenitor system has been identified; the secondary is most likely a sub-giant feeding a luminous accretion disk. Properties of the SSS infer a white dwarf (WD) mass 1.1 M⊙ lesssim MWD lesssim 1.3 M⊙. If the accretion occurs at a constant rate, M˙acc≃3.6−2.5+4.7×10−7  M⊙{\dot{M}}_{{\rm{acc}}}\simeq {3.6}_{-2.5}^{+4.7}\times {10}^{-7}\;{M}_{\odot } yr−1 is needed, consistent with nova models for an inter-eruption interval of 38 years, low outburst amplitude, progenitor position in the color–magnitude diagram, and spectral energy distribution at quiescence. We note striking similarities between LMC 2009a and the Galactic nova KT Eri, suggesting that KT Eri is a candidate RN

    Infrared observations of the recurrent nova T Pyxidis: ancient dust basks in the warm glow of the 2011 outburst

    Full text link
    We present Spitzer Space Telescope and Herschel Space Observatory infrared observations of the recurrent nova T Pyx during its 2011 eruption, complemented by ground-base optical-infrared photometry. We find that the eruption has heated dust in the pre-existing nebulosity associated with T Pyx. This is most likely interstellar dust swept up by T Pyx — either during previous eruptions or by a wind — rather than the accumulation of dust produced during eruptions

    The circumburst environment of a FRED GRB: Study of the prompt emission and X-ray/optical afterglow of GRB 051111

    Full text link
    Aims.We report a multi-wavelength analysis of the prompt emission and early afterglow of GRB 051111 and discuss its properties in the context of current fireball models. Methods.The detection of GRB 051111 by the Burst Alert Telescope on-board Swift triggered early BVRi' observations with the 2-m robotic Faulkes Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray Telescope. Results.The prompt γ\gamma-ray emission shows a classical FRED profile. The optical afterglow light curves are fitted with a broken power law, with α1=0.35{\alpha}_1=0.35 to α2=1.35{\alpha}_2=1.35 and a break time around 12 min after the GRB. Although contemporaneous X-ray observations were not taken, a power law connection between the γ\gamma-ray tail of the FRED temporal profile and the late XRT flux decay is feasible. Alternatively, if the X-ray afterglow tracks the optical decay, this would represent one of the first GRBs for which the canonical steep-shallow-normal decay typical of early X-ray afterglows has been monitored optically. We present a detailed analysis of the intrinsic extinction, elemental abundances and spectral energy distribution. From the absorption measured in the low X-ray band we find possible evidence for an overabundance of some α\alpha elements such as oxygen, [O/Zn] = 0.7 ±\pm 0.3, or, alternatively, for a significant presence of molecular gas. The IR-to-X-ray Spectral Energy Distribution measured at 80 min after the burst is consistent with the cooling break lying between the optical and X-ray bands. Extensive modelling of the intrinsic extinction suggests dust with big grains or grey extinction profiles. The early optical break is due either to an energy injection episode or, less probably, to a stratified wind environment for the circumburst medium

    Liverpool Telescope follow-up of candidate electromagnetic counterparts during the first run of Advanced LIGO

    Get PDF
    The first direct detection of gravitational waves was made in late 2015 with the Advanced LIGO detectors. By prior arrangement, a worldwide collaboration of electromagnetic follow-up observers were notified of candidate gravitational wave events during the first science run, and many facilities were engaged in the search for counterparts. No counterparts were identified, which is in line with expectations given that the events were classified as black hole - black hole mergers. However these searches laid the foundation for similar follow-up campaigns in future gravitational wave detector science runs, in which the detection of neutron star merger events with observable electromagnetic counterparts is much more likely. Three alerts were issued to the electromagnetic collaboration over the course of the first science run, which lasted from September 2015 to January 2016. Two of these alerts were associated with the gravitational wave events since named GW150914 and GW151226. In this paper we provide an overview of the Liverpool Telescope contribution to the follow-up campaign over this period. Given the hundreds of square degree uncertainty in the sky position of any gravitational wave event, efficient searching for candidate counterparts required survey telescopes with large (~degrees) fields-of-view. The role of the Liverpool Telescope was to provide follow-up classification spectroscopy of any candidates. We followed candidates associated with all three alerts, observing 1, 9 and 17 candidates respectively. We classify the majority of the transients we observed as supernovae

    Infrared observations of the 2006 outburst of the recurrent nova RS Ophiuchi: The early phase

    Get PDF
    We present infrared spectroscopy of the recurrent nova RS Ophiuchi, obtained 11.81, 20.75 and 55.71 d following its 2006 eruption. The spectra are dominated by hydrogen recombination lines, together with He i, O i and O ii lines; the electron temperature of ∼104 K implied by the recombination spectrum suggests that we are seeing primarily the wind of the red giant, ionized by the ultraviolet flash when RS Oph erupted. However, strong coronal emission lines (i.e. emission from fine structure transitions in ions having high ionization potential) are present in the last spectrum. These imply a temperature of 930 000 K for the coronal gas; this is in line with X-ray observations of the 2006 eruption. The emission linewidths decrease with time in a way that is consistent with the shock model for the X-ray emission
    corecore