268 research outputs found

    Simulations of the Micro-Bunching Instability for SOLEIL and KARA Using Two Different VFP Solver Codes

    Get PDF
    The longitudinal dynamics of a bunched electron beam is an important aspect in the study of existing and the development of new electron storage rings. The dynamics depend on different beam parameters as well as on the interaction of the beam with its surroundings. A well established method for calculating the resulting dynamics is to numerically solve the Vlasov-Fokker-Planck equation. Depending on the chosen parameters and the considered wakefields and impedances, different effects can be studied. One common application is the investigation of the longitudinal micro-wave and micro-bunching instabilities. The latter occurs for short electron bunches due to self-interaction with their own emitted coherent synchrotron radiation (CSR). In this contribution, two different VFP solvers are used to simulate the longitudinal dynamics with a focus on the micro-bunching instability at the Soleil synchrotron and the KIT storage ring KARA (Karlsruhe Research Accelerator)

    Regina Lectures on Fat Points

    Full text link
    These notes are a record of lectures given in the Workshop on Connections Between Algebra and Geometry at the University of Regina, May 29--June 1, 2012. The lectures were meant as an introduction to current research problems related to fat points for an audience that was not expected to have much background in commutative algebra or algebraic geometry (although sections 8 and 9 of these notes demand somewhat more background than earlier sections).Comment: 32 pages, 3 figure

    Coproducing Knowledge of the Implementation of Complex Digital Health Interventions for Adults with Acquired Brain Injury and their Communication Partners: Protocol for a Mixed Methods Study.

    Full text link
    BACKGROUND: The Social Brain Toolkit, conceived and developed in partnership with stakeholders, is a novel suite of web-based communication interventions for people with brain injury and their communication partners. To support effective implementation, the developers of the Social Brain Toolkit have collaborated with people with brain injury, communication partners, clinicians, and individuals with digital health implementation experience to coproduce new implementation knowledge. In recognition of the equal value of experiential and academic knowledge, both types of knowledge are included in this study protocol, with input from stakeholder coauthors. OBJECTIVE: This study aims to collaborate with stakeholders to prioritize theoretically based implementation targets for the Social Brain Toolkit, understand the nature of these priorities, and develop targeted implementation strategies to address these priorities, in order to support the Social Brain Toolkit's implementation. METHODS: Theoretically underpinned by the Nonadoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework of digital health implementation, a maximum variation sample (N=35) of stakeholders coproduced knowledge of the implementation of the Social Brain Toolkit. People with brain injury (n=10), communication partners (n=11), and clinicians (n=5) participated in an initial web-based prioritization survey based on the NASSS framework. Survey completion was facilitated by plain English explanations and accessible captioned videos developed through 3 rounds of piloting. A speech-language pathologist also assisted stakeholders with brain injury to participate in the survey via video teleconference. Participants subsequently elaborated on their identified priorities via 7 web-based focus groups, in which researchers and stakeholders exchanged stakeholder perspectives and research evidence from a concurrent systematic review. Stakeholders were supported to engage in focus groups through the use of visual supports and plain English explanations. Additionally, individuals with experience in digital health implementation (n=9) responded to the prioritization survey questions via individual interview. The results will be deductively analyzed in relation to the NASSS framework in a coauthorship process with people with brain injury, communication partners, and clinicians. RESULTS: Ethical approval was received from the University of Technology Sydney Health and Medical Research Ethics Committee (ETH20-5466) on December 15, 2020. Data were collected from April 13 to November 18, 2021. Data analysis is currently underway, with results expected for publication in mid-2022. CONCLUSIONS: In this study, researchers supported individuals with living experience of acquired brain injury, of communicating with or clinically supporting someone post injury, and of digital health implementation, to directly access and leverage the latest implementation research evidence and theory. With this support, stakeholders were able to prioritize implementation research targets, develop targeted implementation solutions, and coauthor and publish new implementation findings. The results will be used to optimize the implementation of 3 real-world, evidence-based interventions and thus improve the outcomes of people with brain injury and their communication partners. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35080

    Structures and Phase Transitions of the A

    Full text link

    Synthesis of Polyhydroxylated Pyrano-Pyrrole Derivatives from Carbohydrate Precursors

    Get PDF
    The efficient synthesis of novel polyhydroxy‐tetrahydropyrano‐pyrroles from acetylenic carbohydrate precursors in three to four steps is described. The methodology involves, as key steps, the ring contraction of pyridazine intermediates obtained by an inverse‐demand Diels–Alder reaction and subsequent intramolecular lactonization

    High repetition-rate electro-optic sampling: Recent studies using photonic time-stretch

    Get PDF
    Single-shot electro-optic sampling (EOS) is a powerful characterization tool for monitoring the shape of electron bunches, and coherent synchrotron radiation pulses. For reaching high acquisition rates, an efficient possibility consists to associate classic EOS systems with the so-called photonic time-stretch technique [1]. We present recent results obtained at SOLEIL and ANKA using this strategy. In particular, we show how a high sensitivity variant of photonic time stretch [2] EOS enabled to monitor the CSR pulses emitted by short electron bunches at SOLEIL [3]. We could thus confirm in a very direct way the theories predicting an interplay between two physical processes. Below a critical bunch charge, we observe a train of identical THz pulses stemming from the shortness of the electron bunches. Above this threshold, CSR emission is dominated by drifting structures appearing through spontaneous self-organization. We also consider the association of time-stretch and EOS for recording electron bunch near fields at high repetition rate. We present preliminary results obtained at ANKA, aiming at recording the electron bunch shape evolution during the microbunching instability

    TRH: Pathophysiologic and clinical implications

    Get PDF
    Thyrotropin releasing hormone is thought to be a tonic stimulator of the pituitary TSH secretion regulating the setpoint of the thyrotrophs to the suppressive effect of thyroid hormones. The peptide stimulates the release of normal and elevated prolactin. ACTH and GH may increase in response to exogenous TRH in pituitary ACTH and GH hypersecretion syndromes and in some extrapituitary diseases. The pathophysiological implications of extrahypothalamic TRH in humans are essentially unknown. The TSH response to TRH is nowadays widely used as a diganostic amplifier in thyroid diseases being suppressed in borderline and overt hyperthyroid states and increased in primary thyroid failure. In hypothyroid states of hypothalamic origin, TSH increases in response to exogenous TRH often with a delayed and/or exaggerated time course. But in patients with pituitary tumors and suprasellar extension TSH may also respond to TRH despite secondary hypothyroidism. This TSH increase may indicate a suprasellar cause for the secondary hypothyroidism, probably due to portal vessel occlusion. The TSH released in these cases is shown to be biologically inactive

    Seismic structure and activity of the north-central Lesser Antilles subduction zone from an integrated approach: similarities with the Tohoku forearc

    Get PDF
    The 300 km long north-central segment of the Lesser Antilles subduction zone, including Martinique and Guadeloupe islands has been the target of a specific approach to the seismic structure and activity by a cluster of active and passive offshore-onshore seismic experiments coordinated within the ¿Thales was right¿ proposal to the European Union action (Laigle et al., Tectonophys., in rev.) The top of the subducting plate can be followed under the wide accretionary wedge by a dense grid of dip- and strike-lines of multichannel reflection seismics. This reveals the hidden updip limit of the contact of the upper plate crustal backstop thrust onto the slab. Two OBS refraction seismic profiles constrained a 26 km large crustal thickness from the volcanic arc throughout the forearc domain (Kopp et al., EPSL, 2011). These new observations imply a three times larger width of the potential interplate seismogenic zone under the marine domain of the Caribbean plate with respect to a regular intra-oceanic subduction zone, in the common assumption that the upper plate Moho contact on the slab is a proxy of its downdip limit. Towards larger depth under the mantle corner, the top of the slab imaged from the conversions of teleseismic body-waves and the locations of earthquakes from the dense temporary array of 80 OBS and land seismometers appears with kinks which increase the dip from 10-20° under the forearc domain, to 60° on the segment from 70 km depth down to under the volcanic arc. There, at 140 km depth just north of Martinique the 2007 M 7.4 earthquake, largest for half a century, was accompanied by an increased seismic activity over the whole depth range, which provides a new focused image thanks to the OBS and land deployments. A double-planed dipping slab seismicity is thus now resolved, as originally discovered in Tohoku ( NE Japan) and since in some other subduction zones. Other types of seismic activity uniquely observed in Tohoku, are resolved now here, such as ¿supraslab¿ earthquakes with normal-faulting focal mechanisms reliably located in the mantle corner and ¿deep flat-thrust¿ earthquakes at 45 km depth on the interplate fault under the Caribbean plate forearc mantle. None such types of seismicity should occur under the paradigm of a regular peridotitic mantle of the upper plate which is serpentinized by the fluids provided from the dehydrating slab beneath, and which is commonly considered as limiting the downward extent of the interplate seismic coupling. If the upper plate here comprised lithospheric segments related to the earlier formation of the Caribbean oceanic plateau by the material advection from a mantle plume, it could then be underlain by a correspondingly modified, heterogeneous mantle, which may impose regions of stick-slip behaviour on the interplate under the mantle corner among stable-gliding areas. The Tohoku 2011 M9 earthquake was unexpected not only in its slip reaching to the trench, but also in its slip reaching far under the mantle corner against the serpentinization decoupling paradigm, and its structural setting may be revisited for resolving corresponding structural heterogeneityPeer Reviewe
    corecore