52 research outputs found

    Agronomical and analytical trait data assessed in a set of quinoa genotypes growing in the UAE under different irrigation salinity conditions

    Get PDF
    The importance of quinoa has been emphasized considerably in the recent decades, as a highly nutritional crop seed that is tolerant to salinity and amenable to arid agronomical conditions. The focus of this paper is to provide raw and a supplemental data of the research article entitled "Agronomic performance of irrigated quinoa in desert areas: comparing different approaches for early assessment of salinity stress" [1], aiming to compare different approaches for early detection, at the genotypic and crop levels, of the effect of salinity caused by irrigation on the agronomic performance of this crop. A set of 20 genotypes was grown under drip irrigation in sandy soil, amended with manure, at the International Center for Biosaline Agriculture (UAE) for two weeks, after which half of the trial was submitted to irrigation with saline water and this was continued until crop maturity. After eight weeks of applying the two irrigation regimes, pigment contents were evaluated in fully expanded leaves. The same leaves were then harvested, dried and the stable carbon and nitrogen isotope compositions (δ13C and δ15N) and the total nitrogen and carbon contents of the dry matter analyzed, together with ion concentrations. At maturity yield components were assessed and yield harvested. Data analysis demonstrated significant differences in genotypes response under each treatment, within all assessed parameters. The significant level was provided using the Tukey-b test on independent samples. The present dataset highlights the potential use of different approaches to crop phenotyping and monitoring decision making

    Genetic analysis of wheat domestication and evolution under domestication

    Get PDF
    Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement

    Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals

    Get PDF
    Food systems that support healthy diets in sustainable, resilient, just, and equitable ways can engender progress in eradicating poverty and malnutrition; protecting human rights; and restoring natural resources. Food system activities have contributed to great gains for humanity but have also led to significant challenges, including hunger, poor diet quality, inequity, and threats to nature. While it is recognized that food systems are central to multiple global commitments and goals, including the Sustainable Development Goals, current trajectories are not aligned to meet these objectives. As mounting crises further stress food systems, the consequences of inaction are clear. The goal of food system transformation is to generate a future where all people have access to healthy diets, which are produced in sustainable and resilient ways that restore nature and deliver just, equitable livelihoods. A rigorous, science-based monitoring framework can support evidence-based policymaking and the work of those who hold key actors accountable in this transformation process. Monitoring can illustrate current performance, facilitate comparisons across geographies and over time, and track progress. We propose a framework centered around five thematic areas related to (1) diets, nutrition, and health; (2) environment and climate; and (3) livelihoods, poverty, and equity; (4) governance; and (5) resilience and sustainability. We hope to call attention to the need to monitor food systems globally to inform decisions and support accountability for better governance of food systems as part of the transformation process. Transformation is possible in the next decade, but rigorous evidence is needed in the countdown to the 2030 SDG global goals

    Influence of Sisal fiber’s treatment on the kinetics of hydration, morphological and thermophysical properties of the composite cementitious mortar

    No full text
    Currently, cement-based bio-composite is a relevant concept for researchers in the building. However, these researches highlighted some handicaps. Plant fibers are acting as a retarder in the setting time of the cement. In this study, Sisal fiber (SF) (4% by mass of cement) was subjected to different treatments to improve bio-composites hydration kinetics (KH) “tested by isotherm calorimetry”. The treatment slowed down both alkaline hydrolysis and mineralization of fiber cell walls by promoting the hydration of cement. This result was coherent with morphological properties. In fact, the images obtained by scanning electron microscopy (SEM) showed a tinier calcium layer around the (SF) treated with NaOH and Paraffin oil on the adhesion surface. The Fourier transform infrared spectroscopy (FTIR) test revealed a disparity in the peaks of the absorption strips of CaCO3 and Ca(OH)2 and thus cement hydration. In addition, the tests results showed a decrease in thermal conductivity (λ) and volumetric heat capacity (ρ.CV) after treatment of (SF). Resistance (RTh) and thermal diffusivity (α) slightly increased with treated fiber. Considering that, the bio-mortar with treated Sisal fiber can be promising material from an insulation point of view

    Les complications ophtalmologiques du pseudoxanthome élastique. (À propos de 3 cas)

    Get PDF
    Le pseudoxanthome élastique est un trouble héréditaire caractérisé par la minéralisation et la fragmentation des fibres élastiques dans un certain nombre d'organes. Les manifestations cliniques du PXE se concentrent sur trois grands organes : la peau, le système cardiovasculaire et les yeux. Les manifestations oculaires du pseudoxanthome élastique sont de gravité variable, à savoir, la peau d'orange, les stries angioïdes qui nécessitent une simple surveillance jusqu’à la néovascularisation choroïdienne dont le pronostic a été améliorer actuellement par l’avenue des injections intravitréennes de facteur anti-angiogénique.  A travers de trois observations cliniques nous démontreront le rôle de l’ophtalmologiste dans le diagnostic et la thérapeutique des manifestation oculaires du PXE qui peut parfois être tardif
    corecore