16 research outputs found

    Crystal structure of the tetraaquabis(thiocyanato-κN)cobalt(II)–caffeine–water (1/2/4) co-crystal

    No full text
    In the structure of the title compound [systematic name: tetraaquabis(thiocyanato-κN)cobalt(II)–1,3,7-trimethyl-1,2,3,6-tetrahydro-7H-purine-2,6-dione–water (1/2/4)], [Co(NCS)2(H2O)4]·2C8H10N4O2·4H2O, the cobalt(II) cation lies on an inversion centre and is coordinated in a slightly distorted octahedral geometry by the oxygen atoms of four water molecules and two N atoms of two trans-arranged thiocyanate anions. In the crystal, the complex molecules interact with the caffeine molecules through O—H...N, O—H...O and C—H...S hydrogen bonds and π–π interactions [centroid-to-centroid distance = 3.4715 (5) Å], forming layers parallel to the ab plane, which are further connected into a three-dimensional network by O—H...O and O—H...S hydrogen bonds involving the non-coordinating water molecules

    Synthesis, spectroscopic properties, crystal structure, antimicrobial properties and molecular docking studies of the complex (1) 3(C36H24MnN6)·6(PF6). 0.5H2O

    No full text
    International audienceThe complex (1) of general formula 3(C36H24MnN6)·6(F6P). 0.5H2O was prepared and characterized by IR, UV–visible spectroscopy and single crystal X-ray structure analysis. The complex (1) is crystallized in the monoclinic system (z = 2) with space group of P 2/c, the unit cell parameters are a = 15.1490(3) Å, b = 15.2154(2) Å, c = 23.1114(3) Å, β = 90.5152°, and V = 5326.92 Å3. The asymmetric unit contains one and a half Manganese (II) complex (2) [Mn(II)(C12H8N2)3]2+; one of the cations having crystallographic twofold rotational symmetry. Each Mn (II) is pseudo-octahedrally coordinated by three 1,10-phenanthroline molecules with Mn-N distances included between 1.96 and 1.99 Å. Besides, the intermolecular hydrogen bonds: CH⋯F, CH⋯O and π-π interactions are together playing a vital role in the stabilization of the crystal packing. In addition, the antibacterial activity of the complex (1) was evaluated against some bacterial species: Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, Bacillus Spp, Serratia marcescens, Acinetobacter Bounannue, Staphylococcus saprophiticus; and the antifungal activity against: Aaspergillus niger, Aspergillus spp, Aspergillus nidulans and Candida albicanse. Finally, the 1,10-phenanthroline was docked against various target proteins from diverse bacterial species 1E15 (S. marcescens), 3BU2 (S. saprophiticus), 3GFX (klipsila pnumani), 1BY3 (E. coli) and 5IDV (acinetobacter baumannii) to confirm those obtained results from antibacterial activity. In short, the results of synthesized complex (1) can be exploited in medical field

    Étude d’une réaction des complexes dinucléaires de l’iridium Ir

    No full text
    La fixation du monoxyde de carbone sur les complexes conduit à la formation des complexes Ir2(µ-RC ≡ CR)(µ-S-t-C4H9)(µ-X)(CO)2(PPh3)2 (1a : R = CF3 ; X = CF3CO2. 1b : R = CH3CO2 ; X = CF3CO2. 1c : X = S-t-C4H9) ; R = CH3CO2) conduit à la formation des complexes Ir2(µ-RC ≡ CR)(µ-S-t-C4H9) (CO)3(X)(PPh3)2, 2a, b, c, dans lesquels le ligand X est passé de la position pontante à la position terminale, révélant par con séquent une inertie relative du pontage par l’alcyne. Les complexes 2 existent sous deux formes isomères α et β qui ont été isolées et caractérisées par spectroscopies IR, de RMN du proton, du phosphore et du carbone. Ces deux types d’isomères se différentient par les positions des ligands carbonyles et/ou du ligand X devenu ter minai par rapport au groupe S-t-C4H9 resté en position pontante. On a observé également à partir de 1c, la formation d’un composé que l’on peut identifier, sur la base de plusieurs arguments spectroscopiques, comme un troisième isomère présentant un motif -C(R) = C(R)-C(0)- en pont entre les deux atomes d’iridium. Il s’agit donc d’un cas d’insertion du groupement carbonyle dans une liaison métal-carbone du ligand acétylénique bimétallée

    Ecailles de poissons : nouveau support de biomasse dans les bioréacteurs a lit mobile pour le traitement des effluents des laiteries

    No full text
    Cette étude porte sur le traitement par voie biologique de la charge polluante organique des effluents des laiteries. Un déchet de la pêche, des écailles de poissons de l’espèce Diplodus sargus cadenati (Sar Gros, E.SG) a été testé en tant que garnissage support de biofilm dans un bioréacteur à lit mobile, dans le but d’améliorer les performances d’épuration. Les résultats obtenus sur certains paramètres de la dépollution (pH, DCO, MES, azote total) sont prometteurs. La quantité d’écailles nécessaire a été optimisée pour des raisons économiques et écologiques. This study focuses on the biological treatment of organic pollution load of effluents dairies. It proposes a new method. i.e. The use of fish scales Diplodus sargus species, as a solid support for colonization of suspended biomass in the bioreactor moving bed in order to improve the properties and quality of clearance. The results of monitoring the parameters of pollution control (pH, COD, MS, total nitrogen) are promising. Finally the amount of scales necessary has been optimized for economic and ecological reasons

    Pancreatic islet autotransplantation with total pancreatectomy for chronic pancreatitis

    Get PDF
    Achieving pain relief and improving the quality of life are the main targets of treatment for patients with chronic pancreatitis. The use of total pancreatectomy to treat chronic pancreatitis is a radical and in some ways ideal strategy. However, total pancreatectomy is associated with severe diabetic control problems. Total pancreatectomy with islet autotransplantation can relieve severe pain and prevent the development of postsurgical diabetes. With islet autotransplantation, patients with chronic pancreatitis receive their own islet cells and therefore do not require immunosuppressive therapy. In the future, total pancreatectomy with islet autotransplantation may be considered a treatment option for chronic pancreatitis patients
    corecore