8,604 research outputs found

    Excessive Memory Usage of the ELLPACK Sparse Matrix Storage Scheme throughout the Finite Element Computations

    Get PDF
    Sparse matrices are occasionally encountered during solution of various problems by means of numerical methods, particularly the finite element method. ELLPACK sparse matrix storage scheme, one of the most widely used methods due to its implementation ease, is investigated in this study. The scheme uses excessive memory due to its definition. For the conventional finite element method, where the node elements are used, the excessive memory caused by redundant entries in the ELLPACK sparse matrix storage scheme becomes negligible for large scale problems. On the other hand, our analyses show that the redundancy is still considerable for the occasions where facet or edge elements have to be used

    Spinodal Instabilities in Nuclear Matter in a Stochastic Relativistic Mean-Field Approach

    Get PDF
    Spinodal instabilities and early growth of baryon density fluctuations in symmetric nuclear matter are investigated in the basis of stochastic extension of relativistic mean-field approach in the semi-classical approximation. Calculations are compared with the results of non-relativistic calculations based on Skyrme-type effective interactions under similar conditions. A qualitative difference appears in the unstable response of the system: the system exhibits most unstable behavior at higher baryon densities around ρb=0.4 ρ0\rho_{b}=0.4 ~\rho_{0} in the relativistic approach while most unstable behavior occurs at lower baryon densities around ρb=0.2 ρ0\rho_{b}=0.2 ~\rho_{0} in the non-relativistic calculationsComment: 18 pages, 7 figure

    Quenched large deviations for multidimensional random walk in random environment with holding times

    Full text link
    We consider a random walk in random environment with random holding times, that is, the random walk jumping to one of its nearest neighbors with some transition probability after a random holding time. Both the transition probabilities and the laws of the holding times are randomly distributed over the integer lattice. Our main result is a quenched large deviation principle for the position of the random walk. The rate function is given by the Legendre transform of the so-called Lyapunov exponents for the Laplace transform of the first passage time. By using this representation, we derive some asymptotics of the rate function in some special cases.Comment: This is the corrected version of the paper. 24 page

    Dualisation of the D=7 Heterotic String

    Full text link
    The dualisation and the first-order formulation of the D=7 abelian Yang-Mills supergravity which is the low energy effective limit of the D=7 fully Higssed heterotic string is discussed. The non-linear coset formulation of the scalars is enlarged to include the entire bosonic sector by introducing dual fields and by constructing the Lie superalgebra which generates the dualized coset element.Comment: 20 page
    corecore