5,156 research outputs found
Gladiolus insects in Iowa
Previous to the discovery of the gladiolus thrips in North America in 1929, the gladiolus plant was considered practically free from serious insect injury. With the introduction and rapid distribution of the thrips, however, the study of insects attacking the gladiolus has demanded the attention of entomologists as well as commercial growers in many states. At the present time a complete list of insects which feed on this plant would comprise a considerable number of species. Even though some of these are of only secondary importance, they may under some conditions become pests of serious consequence to the individual grower. The purpose of this bulletin is to familiarize the grower with the habits, type of injury and the control of the more common gladiolus insect pests
Development of an Effective User Interface for a Computerized Laboratory Alerting System
Conference PaperBiomedical Informatic
Determining the effects of cattle grazing treatments on Yosemite toads (Anaxyrus [=Bufo] canorus) in montane meadows.
Amphibians are experiencing a precipitous global decline, and population stability on public lands with multiple uses is a key concern for managers. In the Sierra Nevada Mountains (California, USA), managers have specifically identified livestock grazing as an activity that may negatively affect Yosemite toads due to the potential overlap of grazing with toad habitat. Grazing exclusion from Yosemite toad breeding and rearing areas and/or entire meadows have been proposed as possible management actions to alleviate the possible impact of cattle on this species. The primary objective of this study was to determine if different fencing treatments affect Yosemite toad populations. We specifically examined the effect of three fencing treatments on Yosemite toad breeding pool occupancy, tadpoles, and young of the year (YOY). Our hypothesis was that over the course of treatment implementation (2006 through 2010), Yosemite toad breeding pool occupancy and early life stage densities would increase within two fencing treatments relative to actively grazed meadows due to beneficial changes to habitat quality in the absence of grazing. Our results did not support our hypothesis, and showed no benefit to Yosemite toad presence or early life stages in fenced or partially fenced meadows compared to standard USDA Forest Service grazing levels. We found substantial Yosemite toad variation by both meadow and year. This variation was influenced by meadow wetness, with water table depth significant in both the tadpole and YOY models
Spectral signature of short attosecond pulse trains
We report experimental measurements of high-order harmonic spectra generated
in Ar using a carrier-envelope-offset (CEO) stabilized 12 fs, 800nm laser field
and a fraction (less than 10%) of its second harmonic. Additional spectral
peaks are observed between the harmonic peaks, which are due to interferences
between multiple pulses in the train. The position of these peaks varies with
the CEO and their number is directly related to the number of pulses in the
train. An analytical model, as well as numerical simulations, support our
interpretation
A novel ex vivo model for investigation of fluid displacements in bone after endoprosthesis implantation
Tissue perfusion and mass transport in the vicinity of implant surfaces prior to integration or bonding may play a crucial role in modulating cellular activities associated with bone remodeling, in particular, at early stages of the integration process. Furthermore, fluid displacements have been postulated to transduct mechanical stress signals to bone cells via loading-dependent flow of interstitial fluid through the lacunocanalicular network of bone. Thus, an understanding and new possibilities for influencing these processes may be of great importance for implant success. An ex vivo model was developed and validated for investigation of fluid displacements in bone after endoprosthesis implantation. This model serves to explicate the effects of surgical intervention as well as mechanical loading of the implant-bone construct on load-induced fluid flow in the vicinity of the implant. Using this model, we intend to quantify perfusion and extravascular flow dynamics in the vicinity of implants and define optimal conditions for enhancing molecular transport of osteotropic agents from the implant surface to apposing bone as well as from the blood supply to the implant surface. Furthermore, the elucidation of main transport pathways may help in understanding the distribution of wear particles in bone surrounding implant, a process which has been postulated to cause osteolysis and implant loosenin
Light-mediated multi-target protein degradation using arylazopyrazole photoswitchable PROTACs (AP-PROTACs)
Light-activable spatiotemporal control of PROTAC-induced protein degradation was achieved with novel arylazopyrazole photoswitchable PROTACs (AP-PROTACs). The use of a promiscuous kinase inhibitor in the design enables this unique photoswitchable PROTAC to selectively degrade four protein kinases together with on/off optical control using different wavelengths of light
Rotating Superconductors and the London Moment: Thermodynamics versus Microscopics
Comparing various microscopic theories of rotating superconductors to the
conclusions of thermodynamic considerations, we traced their marked difference
to the question of how some thermodynamic quantities (the electrostatic and
chemical potentials) are related to more microscopic ones: The electron's the
work function, mean-field potential and Fermi energy -- certainly a question of
general import.
After the correct identification is established, the relativistic correction
for the London Moment is shown to vanish, with the obvious contribution from
the Fermi velocity being compensated by other contributions such as
electrostatics and interactions.Comment: 23 pages 4 fi
Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin-myosin light chain interaction
Despite the recognized importance of the multi-scale spatio-temporal
organization of proteins, most computational tools can only access a limited
spectrum of time and spatial scales, thereby ignoring the effects on protein
behavior of the intricate coupling between the different scales. Starting from
a physico-chemical atomistic network of interactions that encodes the structure
of the protein, we introduce a methodology based on multi-scale graph
partitioning that can uncover partitions and levels of organization of proteins
that span the whole range of scales, revealing biological features occurring at
different levels of organization and tracking their effect across scales.
Additionally, we introduce a measure of robustness to quantify the relevance of
the partitions through the generation of biochemically-motivated surrogate
random graph models. We apply the method to four distinct conformations of
myosin tail interacting protein, a protein from the molecular motor of the
malaria parasite, and study properties that have been experimentally addressed
such as the closing mechanism, the presence of conserved clusters, and the
identification through computational mutational analysis of key residues for
binding.Comment: 13 pages, 7 Postscript figure
Coping with strong translational noncrystallographic symmetry and extreme anisotropy in molecular replacement with Phaser: human Rab27a
Data pathologies caused by effects such as diffraction anisotropy and translational noncrystallographic symmetry (tNCS) can dramatically complicate the solution of the crystal structures of macromolecules. Such problems were encountered in determining the structure of a mutant form of Rab27a, a member of the Rab GTPases. Mutant Rab27a constructs that crystallize in the free form were designed for use in the discovery of drugs to reduce primary tumour invasiveness and metastasis. One construct, hRab27aMut, crystallized within 24 h and diffracted to 2.82 Å resolution, with a unit cell possessing room for a large number of protein copies. Initial efforts to solve the structure using molecular replacement by Phaser were not successful. Analysis of the data set revealed that the crystals suffered from both extreme anisotropy and strong tNCS. As a result, large numbers of reflections had estimated standard deviations that were much larger than their measured intensities and their expected intensities, revealing problems with the use of such data at the time in Phaser. By eliminating extremely weak reflections with the largest combined effects of anisotropy and tNCS, these problems could be avoided, allowing a molecular-replacement solution to be found. The lessons that were learned in solving this structure have guided improvements in the numerical analysis used in Phaser, particularly in identifying diffraction measurements that convey very little information content. The calculation of information content could also be applied as an alternative to ellipsoidal truncation. The post-mortem analysis also revealed an oversight in accounting for measurement errors in the fast rotation function. While the crystal of mutant Rab27a is not amenable to drug screening, the structure can guide new modifications to obtain more suitable crystal forms
- …