98 research outputs found

    Effect of electrical bias on spin transport across a magnetic domain wall

    Get PDF
    We present a theory of the current-voltage characteristics of a magnetic domain wall between two highly spin-polarized materials, which takes into account the effect of the electrical bias on the spin-flip probability of an electron crossing the wall. We show that increasing the voltage reduces the spin-flip rate, and is therefore equivalent to reducing the width of the domain wall. As an application, we show that this effect widens the temperature window in which the operation of a unipolar spin diode is nearly ideal.Comment: 11 pages, 3 figure

    Spin-orbit interaction from low-symmetry localized defects in semiconductors

    Full text link
    The presence of low-symmetry impurities or defect complexes in the zinc-blende direct-gap semiconductors (e.g. interstitials, DX-centers) results in a novel spin-orbit term in the effective Hamiltonian for the conduction band. The new extrinsic spin-orbit interaction is proportional to the matrix element of the defect potential between the conduction and the valence bands. Because this interaction arises already in the first order of the expansion of the effective Hamiltonian in powers of Uext/Eg << 1 (where Uext is the pseudopotential of an interstitial atom, and Eg is the band gap), its contribution to the spin relaxation rate may exceed that of the previously studied extrinsic contributions, even for moderate concentrations of impurities.Comment: extended version, 5+ page

    Nonlinear spin-polarized transport through a ferromagnetic domain wall

    Get PDF
    A domain wall separating two oppositely magnetized regions in a ferromagnetic semiconductor exhibits, under appropriate conditions, strongly nonlinear I-V characteristics similar to those of a p-n diode. We study these characteristics as functions of wall width and temperature. As the width increases or the temperature decreases, direct tunneling between the majority spin bands decreases the effectiveness of the diode. This has important implications for the zero-field quenched resistance of magnetic semiconductors and for the design of a recently proposed spin transistor.Comment: 5 pages, 3 figure

    Nano granular metallic Fe - oxygen deficient TiO2δ_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2δ_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in \approx 10 nm metallic Fe spherical grains suspended within a TiO2δ_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2δ_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Atomic mass dependence of \Xi^- and \overline{\Xi}^+ production in central 250 GeV \pi^- nucleon interactions

    Full text link
    We present the first measurement of the atomic mass dependence of central \Xi^- and \overline{\Xi}^+ production. It is measured using a sample of 22,459 \Xi^-'s and \overline{\Xi}^+'s produced in collisions between a 250 GeV \pi^- beam and targets of beryllium, aluminum, copper, and tungsten. The relative cross sections are fit to the two parameter function \sigma_0 A^\alpha, where A is the atomic mass. We measure \alpha = 0.924+-0.020+-0.025, for Feynman-x in the range -0.09 < x_F < 0.15.Comment: 10 pages, revtex, 2 figures, submitted to Phys. Rev.

    On the Chemical Origin of the Gap Bowing in (GaAs)1−xGe2x Alloys: A Combined DFT–QSGW Study

    Get PDF
    Motivated by the research and analysis of new materials for photovoltaics and by the possibility of tailoring their optical properties for improved solar energy conversion, we have focused our attention on the (GaAs)1−xGe2x series of alloys. We have investigated the structural properties of some (GaAs)1−xGe2x compounds within the local-density approximation to density-functional theory, and their optical properties within the Quasiparticle Self-consistent GW approximation. The QSGW results confirm the experimental evidence of asymmetric bandgap bowing. It is explained in terms of violations of the octet rule, as well as in terms of the order–disorder phase transition

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Is Self-Efficacy for Exercise Predictive of Leisure-Time Physical Activity among Police Officers? A Pilot Study

    No full text
    Leisure-time moderate to vigorous physical activity (MVPA) is an essential indicator of overall health. Given the physical nature of police work, it is critical to understand variables that predict officers’ engagement in MVPA. Self-efficacy for exercise (SEE) may be a variable directly related to officer engagement in MVPA. This study aims to examine the relationship between SEE and MVPA among police officers in two departments in a small urban midwestern city. A cross-sectional survey was completed by 32 officers (male = 26, female = 6; aged 35.9 ± 7.1 years). Regression analysis was performed to explore how anthropometric and demographic variables affected SEE’s ability to predict MVPA. When combined with SEE, the model containing age had the highest predictive ability of officers’ engagement in MVPA (p = 0.011; adjusted R2 = 0.2145). Adding other predictor variables reduced the model’s ability to predict MVPA. SEE significantly predicted officers’ engagement in MVPA when age was added as a predictor variable. SEE alone could not predict officers’ engagement in MVPA, but adding other variables besides age to the model did not improve its predictive ability in our study. Police organizations should explore wellness initiatives that increase officers’ SEE and promote MVPA, particularly as officers age
    corecore