24 research outputs found

    Thermal Storage Advanced Thruster System (TSATS) Experimental Program

    Get PDF
    The Thermal Storage Advanced Thruster System (TSATS) rocket test stand is completely assembled and operational. The first trial experimental runs of a low-energy TSATS prototype rocket was made using the test stand. The features of the rocket test stand and the calibration of the associated diagnostics are described and discussed. Design and construction of the TSATS prototype are discussed, and experimental objectives, procedures, and results are detailed

    Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 1: Trade analysis and design

    Get PDF
    This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined

    Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 2: Calculations and derivations

    Get PDF
    This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume

    The Phoenix Mars Landing: An Initial Look

    Get PDF
    This presentation was part of the session : Ongoing and Proposed EDL Technology DevelopmentSixth International Planetary Probe WorkshopNASA's Phoenix Mars Lander will make a landing on Mars on May 25th, 2008. Following on from the overview of the Phoenix entry, descent and landing (EDL) system given at IPPW5, an initial look at the Phoenix landing will be presented, highlighting the salient, high level events that occurred during EDL. Initial EDL flight reconstruction results will be presented, along with a retelling of the flight operations events that occurred on approach to Mars, and during the landing event itself. Note: Given the short time duration between the Phoenix landing and IPPW6, only a presentation will be prepared for the workshop.NAS

    Square-Root Unscented Schmidt–Kalman Filter

    No full text

    Joseph Formulation of Unscented and Quadrature Filters with Application to Consider States

    No full text

    GPS-Based Navigation and Orbit Determination for AMSAT AO-40 Satellite

    No full text

    Venus Origins Explorer (VOX) concept: A proposed new frontiers mission

    No full text
    Of all known planets and moons in the galaxy, Venus remains the most Earth-like in terms of size, composition, surface age, and distance from the Sun [1]. Although not currently habitable, Venus lies within the Sun's 'Goldilocks zone', and may have been habitable before Earth [2]. What caused Venus to follow a divergent path to its present hostile environment, devoid of oceans, magnetic field, and plate tectonics that have enabled Earth's long-term habitability? The proposed Venus Origins Explorer (VOX) would determine how the evolution of Earth's twin diverged, and enable breakthroughs in our understanding of terrestrial planet evolution and habitability in our own solar system - and others. The VOX mission concept consists of two flight elements: 1) an Atmosphere Sampling Vehicle (ASV), and 2) an Orbiter that accommodates the ASV and also provides global reconnaissance of Venus using just two instruments and a gravity science investigation. The ASV would be released shortly after Venus Orbit Insertion and dips into the well-mixed atmosphere at 112 km. It delivers an in situ atmospheric sample to the Venus Original Constituents Experiment (VOCE) to measure noble gases, revealing the source and evolution of Venus' volatiles. The Orbiter uses the Venus Emissivity Mapper (VEM) to map global surface mineralogy and search for active or recent volcanism. Venus Interferometric Synthetic Aperture Radar (VISAR) generates long-awaited high-resolution imaging and digital elevation models, and possible deformation maps with repeat-pass interferometry, a new tool for planetary science. Ka-band tracking increases the gravity field resolution, enabling global elastic thickness estimates. Using a low risk implementation and just three instruments plus gravity science, VOX conducts a comprehensive global investigation of Venus' dynamic surface. As described below, VOX meets and exceeds the science objectives prescribed in the National Academy of Sciences most recent Planetary Science Decadal Survey. VOX is the logical next mission to Venus because it: 1) addresses top priority atmosphere, surface, and interior science objectives; 2) produces key global datasets to enable comparative planetology; 3) provides high-resolution global topography, composition, and imaging necessary to optimize future landed missions; 4) creates opportunities for revolutionary discoveries and observations of ongoing Venus geological activity, over a three-year period from an orbital platform plus an in situ atmospheric sampling vehicle; and 5) fuels the next generation of scientists by providing 44 Tb of science data. Additionally, VOX offers NASA the ability to select and fly small sats at Venus by providing relay and the ability to trade aerobraking duration for additional mass capability

    Trajectory Reconstruction of the ST-9 Sounding Rocket Experiment Using IMU and Landmark Data

    No full text
    This paper presents trajectory reconstruction of the ST-9 sounding rocket experiment using the onboard IMU data and descent imagery. The raw IMU accelerometer measurements are first converted into inertial acceleration and then used in trajectory integration. The descent images are pre-processed using a map-matching algorithm and unique landmarks for each image are created. Using the converted IMU data and descent images, the result from dead-reckoning and the kinematic-fix approaches are first compared with the GPS measurements. Then, both the IMU data and landmarks are processed together using a batch least-squares filter and the position, velocity, stochastic acceleration, and camera orientation of each image are estimated. The reconstructed trajectory is compared with the GPS data and the corresponding formal uncertainties are presented. The result shows that IMU data and descent images processed with a batch filter algorithm provide the trajectory accuracy required for pin-point landing
    corecore