14,434 research outputs found

    Neural network modeling of memory deterioration in Alzheimer's disease

    Get PDF
    The clinical course of Alzheimer's disease (AD) is generally characterized by progressive gradual deterioration, although large clinical variability exists. Motivated by the recent quantitative reports of synaptic changes in AD, we use a neural network model to investigate how the interplay between synaptic deletion and compensation determines the pattern of memory deterioration, a clinical hallmark of AD. Within the model we show that the deterioration of memory retrieval due to synaptic deletion can be much delayed by multiplying all the remaining synaptic weights by a common factor, which keeps the average input to each neuron at the same level. This parallels the experimental observation that the total synaptic area per unit volume (TSA) is initially preserved when synaptic deletion occurs. By using different dependencies of the compensatory factor on the amount of synaptic deletion one can define various compensation strategies, which can account for the observed variation in the severity and progression rate of AD

    Laid Off: American Workers and Employers Assess a Volatile Labor Market

    Get PDF
    This Work Trends survey shows that despite economic growth, worker concern for the economy, their job security, and the threat of terrorism is increasing; workers and employers express fear about outsourcing jobs abroad

    Entanglement-Saving Channels

    Full text link
    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ\psi is said to be ES if its powers ψn\psi^n are not entanglement-breaking for all integers nn. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps which, not only preserve entanglement for all finite nn, but which also sustain an explicitly not null level of entanglement in the asymptotic limit~n→∞n\rightarrow \infty. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.Comment: 26 page

    Singular value decomposition and matrix reorderings in quantum information theory

    Full text link
    We review Schmidt and Kraus decompositions in the form of singular value decomposition using operations of reshaping, vectorization and reshuffling. We use the introduced notation to analyse the correspondence between quantum states and operations with the help of Jamiolkowski isomorphism. The presented matrix reorderings allow us to obtain simple formulae for the composition of quantum channels and partial operations used in quantum information theory. To provide examples of the discussed operations we utilize a package for the Mathematica computing system implementing basic functions used in the calculations related to quantum information theory.Comment: 11 pages, no figures, see http://zksi.iitis.pl/wiki/projects:mathematica-qi for related softwar

    Induced magnetism of carbon atoms at the graphene/Ni(111) interface

    Full text link
    We report an element-specific investigation of electronic and magnetic properties of the graphene/Ni(111) system. Using magnetic circular dichroism, the occurrence of an induced magnetic moment of the carbon atoms in the graphene layer aligned parallel to the Ni 3d magnetization is observed. We attribute this magnetic moment to the strong hybridization between C π\pi and Ni 3d valence band states. The net magnetic moment of carbon in the graphene layer is estimated to be in the range of 0.05−0.1ÎŒB0.05-0.1 \mu_B per atom.Comment: 10 pages, 3 figure

    Structural and electronic properties of the graphene/Al/Ni(111) intercalation-like system

    Full text link
    Decoupling of the graphene layer from the ferromagnetic substrate via intercalation of sp metal has recently been proposed as an effective way to realize single-layer graphene-based spin-filter. Here, the structural and electronic properties of the prototype system, graphene/Al/Ni(111), are investigated via combination of electron diffraction and spectroscopic methods. These studies are accompanied by state-of-the-art electronic structure calculations. The properties of this prospective Al-intercalation-like system and its possible implementations in future graphene-based devices are discussed.Comment: 20 pages, 8 figures, and supplementary materia

    Graphene on ferromagnetic surfaces and its functionalization with water and ammonia

    Get PDF
    Here we present an angle-resolved photoelectron spectroscopy (ARPES), x-ray absorption spec-troscopy (XAS), and density-functional theory (DFT) investigations of water and ammonia ad-sorption on graphene/Ni(111). Our results on graphene/Ni(111) reveal the existence of interface states, originating from the strong hybridization of the graphene {\pi} and spin-polarized Ni 3d valence band states. ARPES and XAS data of the H2O (NH3)/graphene/Ni(111) system give an information about the kind of interaction between adsorbed molecules and graphene on Ni(111). The presented experimental data are compared with the results obtained in the framework of the DFT approach.Comment: accepted in Nanoscale Research Letters; 16 pages, 4 figures, 2 table

    Observation of Three-dimensional Long-range Order in Smaller Ion Coulomb Crystals in an rf Trap

    Full text link
    Three-dimensional long-range ordered structures in smaller and near-spherically symmetric Coulomb crystals of ^{40}Ca^+ ions confined in a linear rf Paul trap have been observed when the number of ions exceeds ~1000 ions. This result is unexpected from ground state molecular dynamics (MD) simulations, but found to be in agreement with MD simulations of metastable ion configurations. Previously, three-dimensional long-range ordered structures have only been reported in Penning traps in systems of ~50,000 ions or more.Comment: 5 pages; 4 figures; to appear in Phys. Rev. Lett.; changed content

    General criterion for the entanglement of two indistinguishable particles

    Full text link
    We relate the notion of entanglement for quantum systems composed of two identical constituents to the impossibility of attributing a complete set of properties to both particles. This implies definite constraints on the mathematical form of the state vector associated with the whole system. We then analyze separately the cases of fermion and boson systems, and we show how the consideration of both the Slater-Schmidt number of the fermionic and bosonic analog of the Schmidt decomposition of the global state vector and the von Neumann entropy of the one-particle reduced density operators can supply us with a consistent criterion for detecting entanglement. In particular, the consideration of the von Neumann entropy is particularly useful in deciding whether the correlations of the considered states are simply due to the indistinguishability of the particles involved or are a genuine manifestation of the entanglement. The treatment leads to a full clarification of the subtle aspects of entanglement of two identical constituents which have been a source of embarrassment and of serious misunderstandings in the recent literature.Comment: 18 pages, Latex; revised version: Section 3.2 rewritten, new Theorems added, reference [1] corrected. To appear on Phys.Rev.A 70, (2004

    The χ2\chi^2 - divergence and Mixing times of quantum Markov processes

    Get PDF
    We introduce quantum versions of the χ2\chi^2-divergence, provide a detailed analysis of their properties, and apply them in the investigation of mixing times of quantum Markov processes. An approach similar to the one presented in [1-3] for classical Markov chains is taken to bound the trace-distance from the steady state of a quantum processes. A strict spectral bound to the convergence rate can be given for time-discrete as well as for time-continuous quantum Markov processes. Furthermore the contractive behavior of the χ2\chi^2-divergence under the action of a completely positive map is investigated and contrasted to the contraction of the trace norm. In this context we analyse different versions of quantum detailed balance and, finally, give a geometric conductance bound to the convergence rate for unital quantum Markov processes
    • 

    corecore