3,234 research outputs found
Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas
The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning)
modes in strongly nonaxisymmetric toroidal systems is difficult to analyze
numerically owing to the singular nature of ideal MHD caused by lack of an
inherent scale length. In this paper, ideal MHD is regularized by using a
-space cutoff, making the ray tracing for the WKB ballooning formalism a
chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier
spectrum needed for resolving toroidally localized ballooning modes with a
global eigenvalue code is estimated from the Weyl formula. This
phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication
in Phys. Rev. Letter
Boosting Long-term Memory via Wakeful Rest: Intentional Rehearsal is not Necessary, Automatic Consolidation is Sufficient.
<div><p>People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as ‘foreign names in a bridge club abroad’ and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is <i>not</i> dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is <i>sufficient</i> for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.</p></div
Electronic Correlations in Oligo-acene and -thiophene Organic Molecular Crystals
From first principles calculations we determine the Coulomb interaction
between two holes on oligo-acene and -thiophene molecules in a crystal, as a
function of the oligomer length. The relaxation of the molecular geometry in
the presence of holes is found to be small. In contrast, the electronic
polarization of the molecules that surround the charged oligomer, reduces the
bare Coulomb repulsion between the holes by approximately a factor of two. In
all cases the effective hole-hole repulsion is much larger than the calculated
valence bandwidth, which implies that at high doping levels the properties of
these organic semiconductors are determined by electron-electron correlations.Comment: 5 pages, 3 figure
Detailed balance has a counterpart in non-equilibrium steady states
When modelling driven steady states of matter, it is common practice either
to choose transition rates arbitrarily, or to assume that the principle of
detailed balance remains valid away from equilibrium. Neither of those
practices is theoretically well founded. Hypothesising ergodicity constrains
the transition rates in driven steady states to respect relations analogous to,
but different from the equilibrium principle of detailed balance. The
constraints arise from demanding that the design of any model system contains
no information extraneous to the microscopic laws of motion and the macroscopic
observables. This prevents over-description of the non-equilibrium reservoir,
and implies that not all stochastic equations of motion are equally valid. The
resulting recipe for transition rates has many features in common with
equilibrium statistical mechanics.Comment: Replaced with minor revisions to introduction and conclusions.
Accepted for publication in Journal of Physics
Wakeful rest alleviates interference-based forgetting
Retroactive interference (RI)—the disruptive influence of events occurring after the formation of a new memory—is one of the primary causes of forgetting. Placing individuals within an environment that postpones interference should, therefore, greatly reduce the likelihood of information being lost from memory. For example, a short period of wakeful rest should diminish interference-based forgetting. To test this hypothesis, participants took part in a foreign language learning activity and were shown English translations of 20 Icelandic words for immediate recall. Half of the participants were then given an 8-min rest before completing a similar or dissimilar interfering distractor task. The other half did not receive a rest until after the distractor task, at which point interference had already taken place. All participants were then asked to translate the Icelandic words for a second time. Results revealed that retention was significantly worse at the second recall test, but being allowed a brief rest before completing the distractor task helped reduce the amount of forgetting. Taking a short, passive break can shield new memories from RI and alleviate forgetting.ERAS Scheme, University of Wolverhampto
Structure-Sensitive Mechanism of Nanographene Failure
The response of a nanographene sheet to external stresses is considered in
terms of a mechanochemical reaction. The quantum chemical realization of the
approach is based on a coordinate-of-reaction concept for the purpose of
introducing a mechanochemical internal coordinate (MIC) that specifies a
deformational mode. The related force of response is calculated as the energy
gradient along the MIC, while the atomic configuration is optimized over all of
the other coordinates under the MIC constant-pitch elongation. The approach is
applied to the benzene molecule and (5, 5) nanographene. A drastic anisotropy
in the microscopic behavior of both objects under elongation along a MIC has
been observed when the MIC is oriented either along or normally to the C-C
bonds chain. Both the anisotropy and high stiffness of the nanographene
originate at the response of the benzenoid unit to stress.Comment: 19 pages, 7 figures 1 tabl
Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging
CO2-enrichment experiments consistently show that rooting depth increases when trees are grown at elevated CO2 (eCO2), leading in some experiments to increased capture of available soil nitrogen (N) from deeper soil. However, the link between N uptake an
Charge density wave and quantum fluctuations in a molecular crystal
We consider an electron-phonon system in two and three dimensions on square,
hexagonal and cubic lattices. The model is a modification of the standard
Holstein model where the optical branch is appropriately curved in order to
have a reflection positive Hamiltonian. Using infrared bounds together with a
recent result on the coexistence of long-range order for electron and phonon
fields, we prove that, at sufficiently low temperatures and sufficiently strong
electron-phonon coupling, there is a Peierls instability towards a period two
charge-density wave at half-filling. Our results take into account the quantum
fluctuations of the elastic field in a rigorous way and are therefore
independent of any adiabatic approximation. The strong coupling and low
temperature regime found here is independent of the strength of the quantum
fluctuations of the elastic field.Comment: 15 pages, 1 figur
Nonlinear saturation of electrostatic waves: mobile ions modify trapping scaling
The amplitude equation for an unstable electrostatic wave in a multi-species
Vlasov plasma has been derived. The dynamics of the mode amplitude is
studied using an expansion in ; in particular, in the limit
, the singularities in the expansion coefficients are
analyzed to predict the asymptotic dependence of the electric field on the
linear growth rate . Generically , as
, but in the limit of infinite ion mass or for
instabilities in reflection-symmetric systems due to real eigenvalues the more
familiar trapping scaling is predicted.Comment: 13 pages (Latex/RevTex), 4 postscript encapsulated figures which are
included using the utility "uufiles". They should be automatically included
with the text when it is downloaded. Figures also available in hard copy from
the authors ([email protected]
The radical cation of bacteriochlorophyll b. A liquid-phase endor and triple resonance study
The previous termradical cationnext term of bacterioehlorophyll b (BChl b) is investigated by ENDOR and TRIPLE resonance in liquid solution. The experimental hyperfine coupling constants, ten proton and three nitrogen couplings, are compared with the predictions from advanced molecular-orbital calculations (RHF INDO/SP). The detailed picture obtained of the spin density distribution is a prerequisite for the investigation of the primary electron donor previous termradical cationnext term in BChl b containing photosynthetic bacteria
- …