2,941 research outputs found

    The effects of Venus' thermal structure on buoyant magma ascent

    Get PDF
    The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth

    Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter

    Get PDF
    The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter, carried on the Lunar Reconnaissance Orbiter, permits quantification of the surface roughness properties of the Moon at unprecedented scales and resolution. We map lunar surface roughness using a range of parameters: median absolute slope, both directional (along-track) and bidirectional (in two dimensions); median differential slope; and Hurst exponent, over baselines ranging from ~17 m to ~2.7 km. We find that the lunar highlands and the mare plains show vastly different roughness properties, with subtler variations within mare and highlands. Most of the surface exhibits fractal-like behavior, with a single or two different Hurst exponents over the given baseline range; when a transition exists, it typically occurs near the 1 km baseline, indicating a significant characteristic spatial scale for competing surface processes. The Hurst exponent is high within the lunar highlands, with a median value of 0.95, and lower in the maria (with a median value of 0.76). The median differential slope is a powerful tool for discriminating between roughness units and is useful in characterizing, among other things, the ejecta surrounding large basins, particularly Orientale, as well as the ray systems surrounding young, Copernican-age craters. In addition, it allows a quantitative exploration on mare surfaces of the evolution of surface roughness with age

    The topography of Mars: A re-evaluation of current data

    Get PDF
    Our present knowledge of the topography of Mars is completely inadequate for addressing a wide range of geophysical, geological, and atmospheric problems. The data acquired to date by several techniques has not provided us with reliable and consistent values for even the equatorial and polar radii, and large uncertainties exist in the altitudes of many of the major volcanic constructs. While much of this can be blamed on a lack of reliable data, we feel that much more could be done to improve the analysis of the present data in a consistent global system that would necessarily involve the re-analysis of early spacecraft and Earth-based data in conjunction with more recent models of Mars' gravity field

    A search for double beta decays of tin isotopes with enhanced sensitivity

    Full text link
    A search for the various double beta decay modes of 124Sn and 112Sn has been performed on 75 kg.days of data. New half-life limits for excited states in 124Sn have been obtained including a lower limit for the decay into the first excited 2+ state of 124Te of T_half > 0.87e20 yrs (90% CL) and into the first excited 0+ state of T_half > 1.08e20 yrs (90% CL). Ground state and excited state transitions of 112Sn have also been experimentally explored. A limit for the 2 neutrino double electron capture of T_half > 1.8e19 yrs (90% CL) is obtained. The non-observation of de-excitation gammas from the 0+ at 1888.5keV results in a lower half-life limit on the 0 neutrino double electron capture decay of 112Sn of T_half > 0.8e19 yrs (90% CL), despite a possible resonant enhancement of the decay rate due to degenerated states.Comment: 6 pages, 7 figures, updated analysis and tex

    Formation of fold and thrust belts on Venus due to horizontal shortening of a laterally heterogeneous lithosphere

    Get PDF
    An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise

    The Relationship between the UniProt Knowledgebase (UniProtKB) and the IntAct Molecular Interaction Databases

    Get PDF
    IntAct provides a freely available, open source database system and analysis tools for protein interaction data. All interactions are derived from literature curation or direct user submission and all experimental information relating to binary protein-protein
interactions is entered into the IntAct database by curators, via a web-based editor. Interaction information is added to the SUBUNIT comment and the RP line of the relevant publication within the UniProtKB entry. There may be a single INTERACTION comment present within a UniProtKB entry, which conveys information relevant to binary protein-protein interactions. This is automatically derived from the IntAct database and is updated on a triweekly basis. Interactions can be derived by any appropriate experimental method but must be confirmed by a second interaction if resulting from a single yeast2hybrid experiment. For large-scale experiments, interactions are considered if a high confidence score is assigned by the authors. The INTERACTION line contains a direct link to IntAct that provides detailed information for the experimental support. These lines are not changed manually and any discrepancy is reported to IntAct for updates. There is also a database crossreference line within the UniProtKB entry i.e.: DR IntAct _UniProtKB AC, which directs the user to additional interaction data for that molecule. 
UniProt is supported by grants from the National Institutes of Health, European Commission, Swiss Federal Government and PATRIC BRC.
IntAct is funded by the European Commission under FELICS, contract number 021902 (RII3) within the Research Infrastructure Action of the FP6 "Structuring the European Research Area" Programme

    The Boundary Conformal Field Theories of the 2D Ising critical points

    Full text link
    We present a new method to identify the Boundary Conformal Field Theories (BCFTs) describing the critical points of the Ising model on the strip. It consists in measuring the low-lying excitation energies spectra of its quantum spin chain for different boundary conditions and then to compare them with those of the different boundary conformal field theories of the (A2,A3)(A_2,A_3) minimal model.Comment: 7 pages, no figures. Talk given at the XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20). Prague, June 201

    A 40th deg and order gravitational field model for Mars

    Get PDF
    Understanding the origin and evolution of major photographic features on Mars, such as the hemispheric dichotomy and Tharsis rise, will require improved resolution of that planet's gravitational and topographic fields. The highest resolution gravity model for Mars published to date was derived from Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft, and is of 18th degree and order. That field has a maximum spatial resolution of approx. 600 km, which is comparable to that of the best topographic model. The resolution of previous gravity models was limited not by data density, but rather by the computational resources available at the time. Because this restriction is no longer a limitation, the Viking and Mariner data sets were reanalyzed and a gravitational field was derived complete to the 40th degree and order with a corresponding maximum spatial resolution of 300 km where the data permit

    Kaon physics with a high-intensity proton driver

    Get PDF
    We study opportunities for future high-precision experiments in kaon physics using a high-intensity proton driver, which could be part of the front-end of a muon storage ring complex. We discuss in particular the rare decays KL→π0ΜΜˉK_L\to\pi^0\nu\bar\nu, K+→π+ΜΜˉK^+\to\pi^+\nu\bar\nu, KL→π0e+e−K_L\to\pi^0e^+e^-, and lepton-flavour violating modes such as KL→ΌeK_L\to\mu e and K→πΌeK\to\pi\mu e. The outstanding physics potential and long-term interest of these modes is emphasized. We review status and prospects of current and planned experiments for the processes under consideration, and indicate possible improvements and strategies towards achieving the necessary higher sensitivity. Finally, we outline the machine requirements needed to perform these high-precision kaon experiments in the context of a muon storage ring facility.Comment: 26 pages, 12 figures; report of the kaon physics working group for the ECFA studies on neutrino factory and muon storage rings at CERN, G. Buchalla (convener); references update
    • 

    corecore