3,198 research outputs found

    The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority

    Full text link
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results unchanged

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic

    Thermodynamic glass transition in a spin glass without time-reversal symmetry

    Get PDF
    Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behaviour of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d<6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure

    Why is there no queer international theory?

    Get PDF
    Over the last decade, Queer Studies have become Global Queer Studies, generating significant insights into key international political processes. Yet, the transformation from Queer to Global Queer has left the discipline of International Relations largely unaffected, which begs the question: if Queer Studies has gone global, why has the discipline of International Relations not gone somewhat queer? Or, to put it in Martin Wight’s provocative terms, why is there no Queer International Theory? This article claims that the presumed non-existence of Queer International Theory is an effect of how the discipline of International Relations combines homologization, figuration, and gentrification to code various types of theory as failures in order to manage the conduct of international theorizing in all its forms. This means there are generalizable lessons to be drawn from how the discipline categorizes Queer International Theory out of existence to bring a specific understanding of International Relations into existence

    Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking

    Full text link
    While the constrained minimal supersymmetric standard model (CMSSM) with universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0, defined at some high energy scale (usually taken to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a relation between the trilinear and bilinear soft supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a consequence, tan(\beta) is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can introduce new parameters to the K\"ahler potential which are associated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending on the value of A_0, one may have a gravitino or a neutralino dark matter candidate. We also consider the consequences of imposing the universality conditions above the GUT scale. This GM extension provides a natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange

    What if Supersymmetry Breaking Unifies beyond the GUT Scale?

    Full text link
    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, MinM_{in}, above the GUT scale, \mgut. We assume that the scalar masses and gaugino masses have common values, m0m_0 and m1/2m_{1/2} respectively, at MinM_{in}. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to \mgut, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as MinM_{in} increases. This has the consequence, as we show in (m1/2,m0)(m_{1/2}, m_0) planes for several different values of tanβ\tan \beta, that the stau coannihilation region shrinks as MinM_{in} increases, and we delineate the regions of the (Min,tanβ)(M_{in}, \tan \beta) plane where it is absent altogether. Moreover, as MinM_{in} increases, the focus-point region recedes to larger values of m0m_0 for any fixed tanβ\tan \beta and m1/2m_{1/2}. We conclude that the regions of the (m1/2,m0)(m_{1/2}, m_0) plane that are commonly favoured in phenomenological analyses tend to disappear at large MinM_{in}.Comment: 24 pages with 11 eps figures; references added, some figures corrected, discussion extended and figure added; version to appear in EPJ
    corecore