2,119 research outputs found
Neuropsychological evidence for three distinct motion mechanisms
Published in final edited form as: Neurosci Lett. 2011 May 16; 495(2): 102â106. doi:10.1016/j.neulet.2011.03.048.We describe psychophysical performance of two stroke patients with lesions in distinct cortical regions in
the left hemisphere. Both patients were selectively impaired on direction discrimination in several local
and global second-order but not first-order motion tasks. However, only patient FD was impaired on a
specific bi-stable motion task where the direction of motion is biased by object similarity. We suggest
that this bi-stable motion task may be mediated by a high-level attention or position based mechanism
indicating a separate neurological substrate for a high-level attention or position-based mechanism.
Therefore, these results provide evidence for the existence of at least three motion mechanisms in the
human visual system: a low-level first- and second-order motion mechanism and a high-level attention
or position-based mechanism.Accepted manuscrip
Incommensurate nodes in the energy spectrum of weakly coupled antiferromagnetic Heisenberg ladders
Heisenberg ladders are investigated using the bond-mean-field theory
[M.Azzouz, Phys. Rev. B 48, 6136 (1993)]. The zero inter-ladder coupling energy
gap, the uniform spin susceptibility and the nuclear magnetic resonance
spin-relaxation rate are calculated as a function of temperature and magnetic
field. For weakly coupled ladders, the energy spectrum vanishes at
incommensurate wavevectors giving rise to nodes. As a consequence, the spin
susceptibility becomes linear at low temperature. Our results for the single
ladder successfully compare to experiments on SrCu_2O_3 and (VO)_2P_2O_7
materials and new predictions concerning the coupling to the magnetic field are
made.Comment: 4 revtex pages, 3 figures available upon reques
Magnetic field-induced quantum superconductor-insulator transition in
A study of magnetic-field tuned superconductor-insulator transitions in
amorphous thin films shows that quantum
superconductor-insulator transitions are characterized by an unambiguous
signature -- a kink in the temperature profile of the critical magnetic field.
Using this criterion, we show that the nature of the magnetic-field tuned
superconductor-insulator transition depends on the orientation of the field
with respect to the film. For perpendicular magnetic field, the transition is
controlled by quantum fluctuations with indications for the existence of a Bose
insulator; while for parallel magnetic field, the transition is classical,
driven by the breaking of Cooper pairs at the temperature dependent critical
field .Comment: 5 pages, 4 figure
Niobium Silicon alloys for Kinetic Inductance Detectors
We are studying the properties of Niobium Silicon amorphous alloys as a
candidate material for the fabrication of highly sensitive Kinetic Inductance
Detectors (KID), optimized for very low optical loads. As in the case of other
composite materials, the NbSi properties can be changed by varying the relative
amounts of its components. Using a NbSi film with T_c around 1 K we have been
able to obtain the first NbSi resonators, observe an optical response and
acquire a spectrum in the band 50 to 300 GHz. The data taken show that this
material has very high kinetic inductance and normal state surface resistivity.
These properties are ideal for the development of KID. More measurements are
planned to further characterize the NbSi alloy and fully investigate its
potential.Comment: Accepted for publication on Journal of Low Temperature Physics.
Proceedings of the LTD15 conference (Caltech 2013
Rejection of randomly coinciding events in LiMoO scintillating bolometers using light detectors based on the Neganov-Luke effect
Random coincidences of nuclear events can be one of the main background
sources in low-temperature calorimetric experiments looking for neutrinoless
double-beta decay, especially in those searches based on scintillating
bolometers embedding the promising double-beta candidate Mo, because of
the relatively short half-life of the two-neutrino double-beta decay of this
nucleus. We show in this work that randomly coinciding events of the
two-neutrino double decay of Mo in enriched LiMoO
detectors can be effectively discriminated by pulse-shape analysis in the light
channel if the scintillating bolometer is provided with a Neganov-Luke light
detector, which can improve the signal-to-noise ratio by a large factor,
assumed here at the level of on the basis of preliminary
experimental results obtained with these devices. The achieved pile-up
rejection efficiency results in a very low contribution, of the order of counts/(keVkgy), to the background counting rate
in the region of interest for a large volume ( cm)
LiMoO detector. This background level is very encouraging in
view of a possible use of the LiMoO solution for a bolometric
tonne-scale next-generation experiment as that proposed in the CUPID project
Perspectives in the treatment of antibiotic-resistant bacterial infections with active photodynamic partners within the framework of the EURESTOP COST Action (CA21145)
The European Network for diagnosis and treatment of antibiotic-resistant bacterial infections-EURESTOP COST Action CA21145 focuses on tackling the burden of antimicrobial resistance (AMR) and has gathered many members working on photodynamic approaches. This European consortium is presented here in the One Health context, to highlight the potential of antimicrobial photodynamic therapy (aPDT) in the fight against AMR
Contour extracting networks in early extrastriate cortex
Neurons in the visual cortex process a local region of visual space, but in order to adequately analyze natural images, neurons need to interact. The notion of an ?association field? proposes that neurons interact to extract extended contours. Here, we identify the site and properties of contour integration mechanisms. We used functional magnetic resonance imaging (fMRI) and population receptive field (pRF) analyses. We devised pRF mapping stimuli consisting of contours. We isolated the contribution of contour integration mechanisms to the pRF by manipulating the contour content. This stimulus manipulation led to systematic changes in pRF size. Whereas a bank of Gabor filters quantitatively explains pRF size changes in V1, only V2/V3 pRF sizes match the predictions of the association field. pRF size changes in later visual field maps, hV4, LO-1, and LO-2 do not follow either prediction and are probably driven by distinct classical receptive field properties or other extraclassical integration mechanisms. These pRF changes do not follow conventional fMRI signal strength measures. Therefore, analyses of pRF changes provide a novel computational neuroimaging approach to investigating neural interactions. We interpreted these results as evidence for neural interactions along co-oriented, cocircular receptive fields in the early extrastriate visual cortex (V2/V3), consistent with the notion of a contour association field
Background suppression in massive TeO bolometers with Neganov-Luke amplified light detectors
Bolometric detectors are excellent devices for the investigation of
neutrinoless double-beta decay (0). The observation of such
decay would demonstrate the violation of lepton number, and at the same time it
would necessarily imply that neutrinos have a Majorana character. The
sensitivity of cryogenic detectors based on TeO is strongly limited by the
alpha background in the region of interest for the 0 of
Te. It has been demonstrated that particle discrimination in TeO
bolometers is possible measuring the Cherenkov light produced by particle
interactions. However an event-by-event discrimination with NTD-based light
detectors has to be demonstrated. We will discuss the performance of a
highly-sensitive light detector exploiting the Neganov-Luke effect for signal
amplification. The detector, being operated with NTD-thermistor and coupled to
a 750 g TeO crystal, shows the ability for an event-by-event identification
of electron/gamma and alpha particles. The extremely low detector baseline
noise, RMS 19 eV, demonstrates the possibility to enhance the sensitivity of
TeO-based 0 experiment to an unprecedented level
Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz
We have developed Lumped Element Kinetic Inductance Detectors (LEKID)
sensitive in the frequency band from 80 to 120~GHz. In this work, we take
advantage of the so-called proximity effect to reduce the superconducting gap
of Aluminium, otherwise strongly suppressing the LEKID response for frequencies
smaller than 100~GHz. We have designed, produced and optically tested various
fully multiplexed arrays based on multi-layers combinations of Aluminium (Al)
and Titanium (Ti). Their sensitivities have been measured using a dedicated
closed-circle 100 mK dilution cryostat and a sky simulator allowing to
reproduce realistic observation conditions. The spectral response has been
characterised with a Martin-Puplett interferometer up to THz frequencies, and
with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an
optical sensitivity of about ~ (best pixel), or
~ when averaged over the whole array. The optical
background was set to roughly 0.4~pW per pixel, typical for future space
observatories in this particular band. The performance is close to a
sensitivity of twice the CMB photon noise limit at 100~GHz which drove the
design of the Planck HFI instrument. This figure remains the baseline for the
next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&
- âŠ