1,337 research outputs found

    Plant water uptake modelling : added value of cross-disciplinary approaches

    Get PDF
    Abstract In recent years, research interest in plant water uptake strategies has significantly grown in many disciplines such as hydrology, plant ecology and ecophysiology. Quantitative modelling approaches to estimate plant water uptake and the spatio-temporal dynamics significantly advanced from different disciplines across scales. Despite this progress, major limitations, i.e. to predict plant water uptake under drought or it?s impact at large-scales remain. These are less attributed to limitations in process understanding, but rather to a lack of implementation of cross-disciplinary insights in plant water uptake model structure. The main goal of this review is to highlight how the 4 dominant model approaches, e.g. Feddes approach, hydrodynamic approach, optimality and statistical approaches, can be and have been used to create interdisciplinary hybrid models enabeling a holistic system understanding that e.g. embeds plant water uptake plasticity into a broader conceptual view of soil-plant feedbacks of water, nutrient and carbon cycling or reflects observed drought responses of plant-soil feedbacks and their dynamics under e.g. drought. Specifically, we provide examples of how integration of Bayesian and hydrodynamic approaches might overcome challenges in interpreting plant water uptake related to e.g. different travel and residence times of different plant water sources or trade-offs between root system optimization to forage for water and nutrients during different seasons and phenological stages.In recent years, research interest in plant water uptake strategies has rapidly increased in many disciplines, such as hydrology, plant ecology and ecophysiology. Quantitative modelling approaches to estimate plant water uptake and spatiotemporal dynamics have significantly advanced through different disciplines across scales. Despite this progress, major limitations, for example, predicting plant water uptake under drought or drought impact at large scales, remain. These are less attributed to limitations in process understanding, but rather to a lack of implementation of cross-disciplinary insights into plant water uptake model structure. The main goal of this review is to highlight how the four dominant model approaches, that is, Feddes approach, hydrodynamic approach, optimality and statistical approaches, can be and have been used to create interdisciplinary hybrid models enabling a holistic system understanding that, among other things, embeds plant water uptake plasticity into a broader conceptual view of soil-plant feedbacks of water, nutrient and carbon cycling, or reflects observed drought responses of plant-soil feedbacks and their dynamics under, that is, drought. Specifically, we provide examples of how integration of Bayesian and hydrodynamic approaches might overcome challenges in interpreting plant water uptake related to different travel and residence times of different plant water sources or trade-offs between root system optimization to forage for water and nutrients during different seasons and phenological stages.Peer reviewe

    Assessing the impact of drought on water cycling in urban trees via in-situ isotopic monitoring of plant xylem water

    Get PDF
    CRediT authorship contribution statement A-M. Ring: Data curation, Writing – original draft, Visualization, Investigation, Validation, Formal analysis, Methodology. D. Tetzlaff: Conceptualization, Funding acquisition, Writing – review & editing, Validation, Supervision, Resources, Project administration, Software. M. Dubbert: Writing – review & editing, Investigation, Methodology. J. Freymueller: Data curation, Investigation, Methodology. C. Soulsby: Conceptualization, Writing – review & editing, Validation, Supervision.Peer reviewe

    Resolution and Efficiency of the ATLAS Muon Drift-Tube Chambers at High Background Rates

    Full text link
    The resolution and efficiency of a precision drift-tube chamber for the ATLAS muon spectrometer with final read-out electronics was tested at the Gamma Irradiation Facility at CERN in a 100 GeV muon beam and at photon irradiation rates of up to 990 Hz/square cm which corresponds to twice the highest background rate expected in ATLAS. A silicon strip detector telescope was used as external reference in the beam. The pulse-height measurement of the read-out electronics was used to perform time-slewing corrections which lead to an improvement of the average drift-tube resolution from 104 microns to 82 microns without irradiation and from 128 microns to 108 microns at the maximum expected rate. The measured drift-tube efficiency agrees with the expectation from the dead time of the read-out electronics up to the maximum expected rate

    Performance of the ATLAS Precision Muon Chambers under LHC Operating Conditions

    Full text link
    For the muon spectrometer of the ATLAS detector at the large hadron collider (LHC), large drift chambers consisting of 6 to 8 layers of pressurized drift tubes are used for precision tracking covering an active area of 5000 m2 in the toroidal field of superconducting air core magnets. The chambers have to provide a spatial resolution of 41 microns with Ar:CO2 (93:7) gas mixture at an absolute pressure of 3 bar and gas gain of 2?104. The environment in which the chambers will be operated is characterized by high neutron and background with counting rates of up to 100 per square cm and second. The resolution and efficiency of a chamber from the serial production for ATLAS has been investigated in a 100 GeV muon beam at photon irradiation rates as expected during LHC operation. A silicon strip detector telescope was used as external reference in the beam. The spatial resolution of a chamber is degraded by 4 ?m at the highest background rate. The detection efficiency of the drift tubes is unchanged under irradiation. A tracking efficiency of 98% at the highest rates has been demonstrated

    Reviews and syntheses: Gaining insights into evapotranspiration partitioning with novel isotopic monitoring methods

    Get PDF
    Disentangling ecosystem evapotranspiration (ET) into evaporation (E) and transpiration (T) is of high relevance for a wide range of applications, from land surface modelling to policymaking. Identifying and analysing the determinants of the ratio of T to ET (T/ET) for various land covers and uses, especially in view of climate change with an increased frequency of extreme events (e.g. heatwaves and floods), is prerequisite for forecasting the hydroclimate of the future and tackling present issues, such as agricultural and irrigation practices. One partitioning method consists of determining the water stable isotopic compositions of ET, E, and T (δET, δE, and δE, respectively) from the water retrieved from the atmosphere, the soil, and the plant vascular tissues. The present work emphasizes the challenges this particular method faces (e.g. the spatial and temporal representativeness of the T/ET estimates, the limitations of the models used, and the sensitivities to their driving parameters) and the progress that needs to be made in light of the recent methodological developments. As our review is intended for a broader audience beyond the isotopic ecohydrological and micrometeorological communities, it also attempts to provide a thorough review of the ensemble of techniques used for determining δET, δE, and δE and solving the partitioning equation for T/ET. From the current state of research, we conclude that the most promising way forward to ET partitioning and capturing the subdaily dynamics of T/ET is by making use of non-destructive online monitoring techniques of the stable isotopic composition of soil and xylem water. Effort should continue towards the application of the eddy covariance technique for high-frequency determination of δET at the field scale as well as the concomitant determination of δET, δE, and δE at high vertical resolution with field-deployable lift systems.</p

    A Cosmic Ray Measurement Facility for ATLAS Muon Chambers

    Full text link
    Monitored Drift Tube (MDT) chambers will constitute the large majority of precision detectors in the Muon Spectrometer of the ATLAS experiment at the Large Hadron Collider at CERN. For commissioning and calibration of MDT chambers, a Cosmic Ray Measurement Facility is in operation at Munich University. The objectives of this facility are to test the chambers and on-chamber electronics, to map the positions of the anode wires within the chambers with the precision needed for standalone muon momentum measurement in ATLAS, and to gain experience in the operation of the chambers and on-line calibration procedures. Until the start of muon chamber installation in ATLAS, 88 chambers built at the Max Planck Institute for Physics in Munich have to be commissioned and calibrated. With a data taking period of one day individual wire positions can be measured with an accuracy of 8.3 micrometers in the chamber plane and 27 micrometers in the direction perpendicular to that plane.Comment: 14+1 pages, 11 figures, contributed paper to the EPS2003 conference, Aache

    Rate effects in high-resolution drift chambers

    Get PDF
    The impact of high counting rates on the spatial resolution of cylindrical drift tubes is investigated in detail and the results are compared with simulations. Electronics effects and space-charge effects are quantitatively analysed. A spatial resolution of σ<80μm\sigma < 80\,\mu\mathrm{m} can be achieved even at rates as high as 1500\,Hz/cm wire length (300\,kHz per wire)

    Resolution limits of drift tubes

    Get PDF
    Measurements of the drift-tube response to charged particle tracks are compared with a complete simulation. The measured resolution of typically 80\,μ\mum agrees well with the simulation and allows the individual factors limiting the resolution such as diffusion, charge deposit fluctuations, gas gain fluctuations and signal processing to be studied. The results with respect to the dependence of the drift chamber resolution on gas gain, gas pressure and electronics parameters are reported

    Front-end electronics for drift tubes in a high-rate environment

    Get PDF
    A front-end electronics readout for drift tubes in a high-rate environment is presented. This system allows us to encode several pieces of information (leading edge time, trailing edge time, signal charge and piled-up hits from multiple tracks) into a single readout channel that is presented to the TDC. The advantage of active baseline restoration compared to bipolar signal shaping is discussed
    corecore