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ABSTRACT

In recent years, research interest in plant water uptake strategies has rapidly increased
in many disciplines, such as hydrology, plant ecology and ecophysiology. Quantitative
modelling approaches to estimate plant water uptake and spatiotemporal dynamics
have significantly advanced through different disciplines across scales. Despite this
progress, major limitations, for example, predicting plant water uptake under drought
or drought impact at large scales, remain. These are less attributed to limitations in
process understanding, but rather to a lack of implementation of cross-disciplinary
insights into plant water uptake model structure. The main goal of this review is to
highlight how the four dominant model approaches, that is, Feddes approach, hydro-
dynamic approach, optimality and statistical approaches, can be and have been used
to create interdisciplinary hybrid models enabling a holistic system understanding
that, among other things, embeds plant water uptake plasticity into a broader concep-
tual view of soil–plant feedbacks of water, nutrient and carbon cycling, or reflects
observed drought responses of plant–soil feedbacks and their dynamics under, that is,
drought. Specifically, we provide examples of how integration of Bayesian and hydro-
dynamic approaches might overcome challenges in interpreting plant water uptake
related to different travel and residence times of different plant water sources or
trade-offs between root system optimization to forage for water and nutrients during
different seasons and phenological stages.

INTRODUCTION

Analysing plant water uptake strategies, in particular the
uptake of shallow versus deep soil water sources, has become a
major research focus in hydrology as well as in plant and
ecosystem ecology in recent years (McElrone et al. 2013;
Miguez-Macho & Fan 2021). In hydrology, the central goal in
understanding plant water uptake strategies includes improv-
ing water budget estimates and their partitioning (Ukkola
et al. 2016), disentangling the impact of spatiotemporal water
use dynamics (i.e. changes in water uptake depth distributions)
for soil water budget components (groundwater recharge or
infiltration; Zhang et al. 2019; Shi et al. 2021), water ages and
transit times (Sprenger et al. 2019), and better informing water
resource management (Dabach et al. 2015). In plant or ecosys-
tem ecology, plant water use strategies are dominantly studied
in the context of plant or ecosystem resilience to drought, with
a focus on the interlinkage between water, carbon and nutrient
uptake and use strategies (see e.g. Kong et al. 2014; Karlowsky
et al. 2018; Cusack & Turner 2021). It is further worth noting
that plant ecologists rather refer to plant water uptake (i.e.
above- and belowground components of a plant as one hydro-
logical unit), whereas in hydrological sub-disciplines the term
‘root water uptake’ is more common (emphasizing the soil–
root interface). Here, we will use the term ‘plant water uptake’.

Physically, the uptake of water from the soil into the roots is
essentially a passive process driven by the water potential gradi-
ent between the soil and the atmosphere (along the soil–plant–
atmosphere continuum). In the soil, the redistribution of water
is limited by soil hydraulic conductivity, which may vary by
orders of magnitude within millimetres as the soil dries out
(Javaux et al. 2013). Plants can actively regulate conductivity
within the rhizosphere through, e.g. mucilage exudation
(Carminati & Vetterlein 2012; Carminati et al. 2016). More-
over, it is still a matter of debate as to what extent root hairs
and mycorrhizal hyphae contribute to the uptake of water and
offer more than just physical bridges for water film–flow
between soil particles and the root surface (Allen 2007; Le
Pioufle et al. 2019; Vetterlein et al. 2022). Within the plant,
water fluxes are regulated at three critical stages: (i) during its
radial transport across root tissues; (ii) within plant vasculature
for long-distance transport; and (iii) through stomatal pores,
limiting exchange with the atmosphere. Mechanisms that con-
trol the hydraulic regulation of plant water transport from
roots to leaves are generally complex, with components span-
ning environmental stimuli, hormones and genetic factors
(Tardieu et al. 2011). For example, stomatal aperture is well
studied and responds to both hydraulic and chemical signals
from root to shoot, with osmotic adaptations to water deficit
(Larcher 2003; Christmann et al. 2007; Dodd et al. 2010;
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Vandeleur et al. 2014). Similarly, the dynamics of root hydrau-
lic conductivity show short-term responses to the availability
of water (Hachez et al. 2012) through circadian rhythms (Cal-
deira et al. 2014), but also soluble nutrient concentration, such
as nitrate (Gorska et al. 2008; Ishikawa-Sakurai et al. 2014),
possibly via aquaporin regulation (Javot & Maurel 2002; Pou
et al. 2022). Last, but not least, plant hydraulic properties are
spatially heterogeneous and dynamic in leaves (Tardieu
et al. 2015; Earles et al. 2018) and stems (Bohrer et al. 2005;
Couvreur et al. 2018). Several of these small-scale features may
have substantial impacts on water fluxes, which are integrated
at larger scales (e.g. stand or ecosystem scales). Besides varia-
tions in plant hydraulic properties, there is also plasticity allow-
ing exploration of their environment to access resources. When
water is limited, trees can decrease the shoot–root ratio (for a
global overview, see Ledo et al. 2018) via increased carbon allo-
cation to roots. Root architecture can adapt to the co-
limitation of water and nutrients (Ho et al. 2005). Such plastic
responses have genetic origins, as found in Arabidopsis thaliana
for hydrotropism (Dietrich et al. 2017), ‘hydropatterning’ of
lateral roots (Bao et al. 2014) and the absence of laterals in air
gaps (Orman-Ligeza et al. 2018). The level of spatiotemporal
plasticity of plant roots is impressive (Jackson et al. 1996).
However, despite these discoveries and a recent surge in studies
describing root traits, plant roots are still underrepresented in
modelling frameworks, in particular their dynamic nature
(Guerrero-Ramirez et al. 2021).

Plant water uptake modelling approaches have evolved from
various disciplines over past decades, some assessing the com-
plex processes described above, others considering the idea that
“simplicity is the ultimate sophistication”, quoting Leonardo
Da Vinci, with clear trade-offs involving computing time and
data availability (water isotopic ratios, water potentials and
hydraulic properties). Reminiscent of a diverse colour palette,
these approaches occupy niches determined by compromises
between [model] specificity and [desired] simplicity (De Swaef
et al. 2022). In the context of inaccurate large-scale predictions
of plant water uptake under drought, Hrachowitz et al. (2013)
and De Kauwe et al. (2015) stated clearly that the major limita-
tion is less a lack of understanding of the underlying physiolog-
ical processes than their implementation in catchment-scale
hydrological model structures. This is equally true for links
between water, carbon and nutrient cycling, and the trade-offs
plants face in terms of their root traits to optimize produc-
tivity (Cusack & Turner 2021). Therefore, interdisciplinary
approaches are needed to create cross-disciplinary hybrid mod-
els (Cocozza & Penna 2021). Models related to each niche have
been extensively reviewed (e.g. for isotopic approaches: Roth-
fuss & Javaux 2017; Beyer et al. 2020; for hydrodynamic and
conceptual approaches: Raats 2007; De Swaef et al. 2022).

Here, we highlight how four dominant plant water uptake
model approaches (the Feddes approach. Bayesian approaches,
Optimality approaches and Hydrodynamic approach) have
recently been used to create hybrid models and draw infer-
ences, highlighting new ways forward to overcome current lim-
itations of plant water uptake modelling. We (i) provide a brief
overview of the modus operandi and state-of-the-art for these
four predominantly used plant water uptake modelling
approaches; (ii) highlight the inter-relations between plant
water uptake and other physiological processes; and (iii) pro-
pose examples of interdisciplinary approaches that might be

key to advance our ability to predict plant water uptake
dynamics.

MODELLING PLANT WATER UPTAKE FROM A
HYDROLOGICAL PERSPECTIVE

A quantitative assessment of the regulation of plant water
uptake depth plasticity of plants (e.g. in response to increasing
droughts) is essential to understand vegetation contributions
to ecosystem�/catchment-scale water cycling and to close
water budgets on larger scales (Fan et al. 2017; Werner
et al. 2021). Hydrological models are highly sensitive to plant
water uptake depth, which has a large impact on, for example,
modelled plant productivity (Chenu et al. 2011; Lynch 2013)
and hydrological cycling (Feddes et al. 2001; Li et al. 2021).
Recently, there has been significant progress in hydrological
modelling of plant water uptake, improving representations of
plant hydraulic parameters and their dynamic nature, or the
coupling of tracer-based statistical models with process-based
plant water uptake approaches (Javaux et al. 2013; Rothfuss &
Javaux 2017; Couvreur et al. 2020; Nguyen et al. 2020). Cur-
rently, we can distinguish four major approaches to describe
plant water uptake (see Fig. 1; Table 1).

Bayesian-isotopic or statistical approach

This compares water stable isotope ratios (d2H and d18O) in
plant tissues (dplant) to those of the water sources in the soil
(dsource) and estimates the likelihood of water uptake of each
water source by randomly combining water isotope ratios
from sources and selecting combinations that match the plant
water isotope ratios (e.g. dplant – Σsources dsource fsource < ɛd,
where fsource is the fraction of water uptake in a source, and ɛd
is the error tolerance; Erhardt & Bedrick 2013). An important
prerequisite of this method is that dplant only reflects the com-
bination of potential soil water sources and is not subjected to
isotopic fractionation: e.g. either xylem isotope signatures
(generally dxylem) or transpired water vapour in an isotopic
steady state (dT; used in non-woody species where xylem sam-
pling is not an option). This statistical method, which is more
broadly termed ‘end-member mixing analysis’ (EMMA),
requires either significant differences in natural abundance
soil water isotopic ratios along the soil profile (mostly found
in dry ecosystems) or the use of isotopically labelled water to
artificially enhance the isotopic gradient along the soil profile
(Beyer et al. 2018; Couvreur et al. 2020). Recent advances in
in-situ water stable isotope monitoring techniques that enable
continuous observation of soil and plant xylem water isotope
ratios have boosted the spatiotemporal resolution of this
method (Rothfuss et al. 2013; Volkmann & Weiler 2014;
Volkmann et al. 2016; Kuehnhammer et al. 2019; K€ubert
et al. 2020; Marshall et al. 2020). Their combination with
stable isotope mixing models currently provides the only in-
situ and high-resolution method to quantify the water uptake
depth probabilities of individual plants or communities.
While their use was once limited to the classification of plant
species’ reliance on rainwater versus groundwater (Evaristo &
McDonnell 2017), such techniques are now routinely used in
hydrology and ecohydrology (Parnell et al. 2010; Dubbert &
Werner 2018; Dubbert et al. 2019; Kuehnhammer et al. 2019;
Popp et al. 2019). Nevertheless, if not combined with
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additional constraints (e.g. spatial boundaries of the root sys-
tem, water potential in each soil layer combined with plant
water potential), this statistical method is prone to predict
contributions to plant water uptake by sources that are physi-
ologically not, or currently not, available for plant water
uptake.

The Feddes approach

This is also termed conceptual approach, where the water uptake
profile is assumed to be proportional to the relative root length
density profile when water is equally available throughout the
rooting zone. When water availability is limited, water uptake
is reduced independently in each soil layer according to a ‘soil
water stress’ function of local soil matric potentials (Feddes &
Zaradny 1978). Over time, this approach has been updated
with a ‘compensation factor’ to account for the fact that a local
reduction in water uptake does not necessarily result in a
reduction in transpiration (Jarvis 1989; Simunek & Hop-
mans 2009). Overall, in addition to vertical profiles of soil
matric potential and root length density, this approach requires
as input data the plant potential transpiration rate and parame-
ters of soil water stress and compensation functions, which
have commonly been parameterized to reproduce the overall
plant transpiration response to an index of average soil water
potential (Wesseling 1991; Novak & Havrila 2006). The Feddes
approach has been termed ‘conceptual’ as it was built on rela-
tively simple and intuitive ideas that do not emerge from a
process-based description of hydrodynamics in the soil–plant
system. As summarized by Feddes et al. (1976): “Because of the
amount of fieldwork and experimental difficulties involved in
determining [soil and plant hydraulic properties], an attempt
was made to describe the [profile of root water uptake] with a
more simple expression (. . .) of the soil water content”, a com-
promise that has been a major driver for its widespread success.
Despite its conceptual nature, this approach has been widely
used in land surface models (Feddes et al. 2001; Oleson
et al. 2008) and crop models (Wolf et al. 2011; Kroes
et al. 2018).

The hydrodynamic approach

This assumes that water flows passively along downhill gradi-
ents of water potentials between soil and plant xylem, at a rate
limited by hydraulic resistances on the paths of the water
(Van Den Honert 1948; Doussan et al. 1998; Couvreur
et al. 2012). Such process-based plant water uptake models
require as input the variables transpiration rate, soil water
potentials and root length densities, although complementary
measurements can be used to better constrain the model, e.g.
stem water potential or root hydraulic properties. These
hydraulic parameters can either be estimated by inverse mod-
elling, as in the Feddes approach (Cai et al. 2017), be mea-
sured directly (Jerszurki et al. 2017), inferred from hydraulic
and geometric observations at different scales (Passot
et al. 2018) or translated from libraries of parameter values
from the Feddes model (Couvreur et al. 2014). Recent
advances have allowed further improvements in estimations of
plant water uptake profiles by mechanistically modelling the
transport of water isotopologues, measured either destruc-
tively in the soil and plant tissues (Meunier et al. 2017; Cou-
vreur et al. 2020) or in situ (Zarebanadkouki et al. 2016, 2019;
Pascut et al. 2021). Specific advantages of the process-based
framework are the physical consistency of its predictions with
the second law of thermodynamics and a more descriptive
nature that allows drawing new insights into processes
involved in water transport in the soil–plant system when
compared to direct measurements. This approach is very fre-
quently used in functional–structural plant models (Javaux
et al. 2008; Postma et al. 2017; Braghiere et al. 2020; De Swaef
et al. 2022) and has started to make its way into land surface
models (Kennedy et al. 2019; Sulis et al. 2019; Agee et al.
2021) and crop models (Mboh et al. 2019; Nguyen et al. 2020)
in simple upscaled forms.

The optimality approach

This assumes that natural systems are optimized to fulfil goals
(related to entropy, net carbon gain or access to multiple
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Fig. 1. How different approaches to water uptake by plants may complement each other through four examples.
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resources) under environmental and/or physiological constraints
(irradiance, water balance, carbon cost of plant organs). From a
mathematical perspective, hypothesizing optimal behaviour pro-
vides equations that allow solving of expressions for unknown
variables. Several researchers have used this approach to derive
shapes of rooting profiles for optimal access to water resources
(van Wijk & Bouten 2001; Laio et al. 2006; Schymanski et al.
2008), which strongly affect predicted water uptake depths.
Interestingly, to better constrain plant water uptake depth pre-
dictions, some studies combine the optimality and hydrody-
namic approaches (Schymanski et al. 2008) (example 1 in
Fig. 1), while others combine optimality and Feddes approaches
(van Wijk & Bouten 2001; Laio et al. 2006). Hence, approaches
are not necessarily exclusive (see Fig. 1), although they may work
independently, for instance using simple mass balance principles
in the case of the optimality approach (Kleidon 2004; Guderle &
Hildebrandt 2015). An advantage of the optimality approach is
that the rules can be relatively simple, with few parameters, while
still yielding relatively good predictions, possibly because ecosys-
tems have been selected to respond in the best way possible. In
other words, any ensemble of complex physiological processes
might simply be trained at providing the ‘optimal’ response that
can be captured as a simple rule. A good example is the isohy-
dric regulation of stomatal opening. Complex modelling of
guard cell turgidity regulation via specific osmolytes might
reproduce the response of isohydricity, which is well captured by
a simple rule to maintain leaf water potentials above a defined
threshold, e.g. “wleaf > wthreshold”. Another important aspect of
the optimality approach is its potential to predict trends of vege-
tation responses to new environmental conditions (e.g. water
uptake under elevated atmospheric CO2) without the necessity
of parametrization (Schymanski et al. 2015). Moreover, distinct
constraints to root growth and water uptake depth distribution,
such as water versus nutrient uptake can be optimized (Drew-
niak 2019; Hildebrandt 2020), which is a very important trade-
off, yet not routinely included in plant water uptake modelling.

TRADE-OFFS AND CONFLICTING DEMANDS – PLANT
WATER UPTAKE IS TIGHTLY LINKED TO NUTRIENT AND
CARBON CYCLING

From a plant ecological viewpoint, water uptake from the soil
is one of many functions of a plant’s root system, which
include nutrient uptake, physical stabilization and interactions
with mycorrhizal networks and other life forms (Larcher 2003;
Freschet et al. 2021). In plant ecology, root traits and their
functionality have recently received increased attention, as well
as the coupling between above- and belowground controls of
plant water use and the trade-off between water (and nutrient)
uptake, on the one hand, and carbon investment, on the other
hand (Cusack & Turner 2021). A critical component of root
water acquisition is the spatial exploration of soils by roots.
Many root traits, such as (fine) root biomass distribution, root
elongation rate or root branching density, are decisive to over-
come water limitation, but they are not static (as still often rep-
resented in plant water uptake models; Cusack &
Turner 2021). Despite their impact and a recent surge in stud-
ies describing root traits, they are still underrepresented in
modelling frameworks, in particular their dynamic nature
(Guerrero-Ramirez et al. 2021; but see Agee et al. 2021). Root
traits are not only highly variable in time and space, butT
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species-specific and can not only be adjusted to forage for
water, but also for various nutrients (Kong et al. 2014; Addo-
Danso et al. 2020; Cusack & Turner 2021). Naturally, this cre-
ates the need for trade-offs in their spatiotemporal adjustment
when different resource availabilities (e.g. water versus nutri-
ents) are separated in time and space. In many ecosystems,
nutrient concentrations decline exponentially with depth,
whereas water becomes limited particularly in the upper soil
horizon upon drought (see example I below). Regulating fine
root growth in response to such shifts in dominance of nutrient
versus water limitation on growth demands a significant invest-
ment in carbon allocation belowground. However, above-
ground drought responses, such as increased stomatal control,
not only reduce plant water loss but also limit photosynthesis
and thereby carbon availability for belowground organs (Kar-
lowsky et al. 2018).

In summary, plant water uptake is highly linked with nutri-
ent uptake and carbon allocation, controlled by complex regu-
lation of both below- and aboveground processes and traits.
These traits are highly variable in space and time. On larger
scales (community or stand scale), they involve further pro-
cesses, such as resource niche differentiation (Comas
et al. 2013; Guderle et al. 2017; Chitra-Tarak et al. 2018) and
competition (Craine & Dybzinski 2013; Grossiord et al. 2014).
Consequently, to quantify plant water uptake depth distribu-
tion and its dynamics requires an understanding of such trade-
offs between nutritional demands, carbon allocation strategy
and species-specific water use strategies and their integration in
quantitative modelling approaches that are neither excessively
complex nor lacking in accuracy. Before addressing potential
ways forward (for a summary, see Fig. 1; Table 1), we highlight
these challenges with two examples:

I Root traits (e.g. root biomass depth distribution) are often
optimized to maximize nutrient uptake from surface soils
(Cornejo et al. 1994; Cusack & Turner 2021). During
times of ample water supply, plant water uptake predomi-
nantly takes place from shallow soil layers, hence, nutrient
and water uptake are constrained (e.g. Carvalho & Foulkes
2018). During dry periods, however, nutrient-rich upper
soil layers become increasingly dry and inaccessible for
plant water uptake. Root responses include a shift in water
uptake from shallow (already dry) to deeper (wetter) soil
layers within the rooting zone, and impaired uptake of
mobile nutrients, such as nitrogen, in dry layers (Hen-
riksson et al. 2021). Consequently, water uptake from dee-
per and wetter soil layers under drought will likely be a
compromise between: (i) current demand for nutrients
and changes over the growing period, (ii) vertical nutrient
profile, (iii) type of nutrient (mobile or immobile), (iv)
drought severity, timing and duration, and (v) species-
specific water use adaptations and abilities to extract water
from dry soils (hydraulic resistance, stomatal control,
hydraulic redistribution). Furthermore, geomorphology
and general distribution pattern of water and nutrient
availability play a major role: ecosystems with pronounced
dry periods generally suffer more from a spatiotemporal
separation of water and nutrient availability compared to
temperate ecosystems (Carvalho & Foulkes 2018; Cusack
& Turner 2021).

II Another example is grassland or agricultural systems, where
a common drought mitigation strategy of many species is
to trigger early completion of the life cycle in response to
drought. An equally intense and long drought during
spring might be compensated by shifts in plant water
uptake depths, among other mitigation strategies. During
later stages of the growing period, however, especially
grasses and crops induce early flowering and grain produc-
tion, accompanied by die-back of transpiring leaf biomass,
instead of mitigating drought effects through physiological
responses focused on preserving productivity (Kottmann
et al. 2016; Shavrukos et al. 2017; K€ubert et al. 2019, 2020).
This might lead to a lack of plasticity in plant water uptake
depth distribution that cannot be predicted using current
plant water uptake models. Moreover, in diverse ecosys-
tems like grasslands or mixed forests that comprise plant
species varying in rooting vertical and horizontal extent
and water use strategies, community-scale drought
responses can involve: (i) niche differentiation and comple-
mentarity regarding plant water uptake depth during
drought (Guderle et al. 2017; Brum et al. 2019; Dubbert
et al. 2019; Kahmen et al. 2022), or (ii) competition
between species for shallow water sources (Dubbert
et al. 2014; K€ubert et al. 2019; Magh et al. 2020). Impor-
tantly, such community-scale interactions require an
understanding not only of the vertical but also the horizon-
tal extent of the root system and plant water uptake (see
Schw€arzel et al. 2009; Henriksson et al. 2021).

WAYS FORWARD TOWARDS INTEGRATIVE
INTERDISCIPLINARY MODELLING OF PLANT WATER
UPTAKE

Summarizing the previous paragraphs, current approaches to
plant water uptake depth prediction may integrate and possibly
combine multiple factors, such as water potentials and water iso-
topic signatures (in soil and/or plant), simple to more complex
root traits (rooting depth, root length density distribution, root
hydraulic properties) and optimality criteria. However, these
approaches are not exhaustive: root traits can adapt at various
temporal scales, as can aboveground controls for plant water
uptake dynamics. Moreover, demands that conflict with plant
water use strategies, e.g. nutrient uptake strategies or limits to
below-ground carbon investment, are rarely considered. In par-
ticular, predictions of water uptake in current land surface mod-
els, as well as the Bayesian approach (without adding further
constraints) remain largely unsatisfactory under drought condi-
tions (Ukkola et al. 2016; Rothfuss & Javaux 2017). Therefore,
multiple publications have called for the integration of more
mechanistic yet parsimonious functions of plant water uptake
into ecohydrological models (Bonan et al. 2014; Sperry
et al. 2016; Li et al. 2021). Key advances for such an integration
will require inclusion of interdisciplinary model modules. In the
following, we briefly address two potential ways forward, with
examples of recent pioneering studies:

Integrating novel criteria into statistical approaches

In the original isotope-based Bayesian plant water uptake
approach, large numbers of virtual sets of water sources are
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randomly sampled then pooled, and the sets that yield the same
pooled water isotope signature as found in the plant stem con-
stitute the posterior probability distribution of water sources.
While the nature of this approach is purely statistical, con-
straints can be relatively easily added to its random search
domain. Existing examples of criteria include restrictions to
the spatial dimension of the search domain, excluding soil
water sources where no roots are present or where water
extraction is thermodynamically impossible (i.e. soil layers
whose water potential is lower than plant water potential, a
typical ‘hydrodynamic’ consideration in plant water uptake
modelling; see example 3 in Fig. 1; Kuehnhammer et al. 2019;
Magh et al. 2020; Gessler et al. 2021). From the same perspec-
tive, one could consider that the finite hydraulic conductivity
of a root (below 10�5 m s�1 MPa�1; Meunier et al. 2018)
implies that there is only a restricted amount of water that the
root can absorb at a time. Hence, if a profile of root length
density is available, one may set further constraints to how
much water can be absorbed at a time in each soil layer relative
to other layers, given a maximum water potential difference
between soil and stem of e.g. 1.0 MPa.
Moreover, recent studies show that water travel and resi-

dence times may vary widely in space (Sprenger et al. 2019)
and time (Werner et al. 2021), so that water from some sources
would reach plant stems faster than from other sources (Hen-
riksson et al. 2021). A solution would be to ‘distort’ the Baye-
sian search domain in both space and time to account for the
diversity of water velocities along the soil–plant continuum. To
this end, instead of analysing individual spatial snapshots of
water signatures in the soil and plant, one could delineate
regions in space and time from where and when water has the
same ‘arrival time’ in the plant. An adjusted EMMA approach
could then, for instance, pool shallow water located near a
plant at day D-1, to deep water that is further away at day
D-15, if these ‘waters’ are estimated to have the same arrival
time in the plant at day D (example 4 in Fig. 1). A similar
(although non-statistical) approach was recently proposed by
Seeger & Weiler (2021), aiming to ‘deconvolute’ the stem water
isotopic signature based on a time series of root-zone water sig-
natures and estimated water travel times, combined with the
conceptual Feddes & Zaradny (1978) plant water uptake
model. Interestingly, Knighton et al. (2020) also challenged the
idea of whether the xylem water signature results from soil
water sources sampled at similar times, through the prism of
plant water storage. They considered that the sampled plant
water is not necessarily entirely constituted of soil water with
the same arrival time in the plant. With their integrative exper-
imental and process-based modelling approach, their results
suggest that newly absorbed water mixes with older water
stored in the stem, although mixing is not perfect, and part of
the newly absorbed water only slowly progress along the stem
(‘piston flow’ hypothesis). This process could become particu-
larly important in plants with large water storage capacities
and fluctuations in stem water content, such as trees (Werner
et al. 2021). Implementing this in an EMMA framework would
imply an enlargement of the search domain to include not just
the signatures of water sources at the right ‘departure times’
(i.e. that yield the same arrival time in the plant), but also prior
times that contributed to the reserve of older plant water,
inherently sampled. While meaningful, such evolutions of sta-
tistical approaches also raise questions regarding the increasing

non-unicity of sets of water sources, past and present, which
possibly yield the right stem water signature, besides the large
uncertainties on the estimated water travel times and mixing
rates. Could statistical approaches only become more meaning-
ful at the cost of becoming too complex? Clearly, further
empirical and process-based studies on the velocity and mixing
rates of water pools within plant tissues are essential to
improve our understanding of the relevance of past water
sources in present plant water isotopic signatures (Sprenger
et al. 2019; De Deurwaerder et al. 2020; Pascut et al. 2021).

Indeed, better constraints to statistical problems of
determining sources of plant water might arise from non-
hydrological disciplines. Organic and inorganic nitrogen
compounds are highly mobile and move with water towards
roots. Hence, if plant transpiration and a concentration profile
of one or more mobile nutrients are available, the tentative ver-
tical partitioning of water uptake could be evaluated in respect
to the sufficient accumulation of nutrients over large temporal
periods. Plant water uptake relying solely on water sources with
too low mobile nutrient contents could be considered as unli-
kely in an isotope-based Bayesian framework (see example 4 in
Fig. 1). Finally, vertical rooting profiles should serve multiple
purposes which should be included in the isotope-based Baye-
sian approach (e.g. to exclude water sources below the rooting
zone; to derive the prior distribution of plant water uptake; to
evaluate the hydrodynamic limit to local water uptake, as pro-
posed above), but are not always available (particularly at spe-
cies level and under field conditions). To counter this issue,
multiple studies have used the optimality approach to evaluate
likely rooting profiles based on trade-offs between carbon costs
and needs for water and nutrients (Schymansky et al. 2015;
Drewniak 2019; Ledder et al. 2020). Combining optimality and
Bayesian isotopic approaches could open avenues for the inves-
tigation of season-dependent resource allocation and acquisi-
tion. Accounting for different phenological stages and distinct
seasonal responses of the vegetation to environmental changes
(e.g. drought intensity and duration) could be in sight.

Integrating Bayesian elements into the hydrodynamic
approach

Regardless of their level of complexity, ranging from ‘big root’
(Bisht & Riley 2019) to 3D root ‘hydraulic architecture’ resolu-
tion at a very fine scale (Meunier et al. 2019), soil–plant hydro-
dynamic models tend to be deterministic and have commonly
been used to solve inverse problems in a framework aimed at
minimizing differences from observed variables, even when
simulating the mixing of water isotopologues (Meunier
et al. 2017; Couvreur et al. 2020; Knighton et al. 2020). Ele-
ments of stochasticity are, however, not new to models of root
architecture (Pages et al. 2004) and soil hydrodynamics (Schar-
nagl et al. 2011), which share the same level of complexity as
soil–plant hydrodynamic models. The most relevant example,
to our knowledge, is that of De Deurwaerder et al. (2021), who
fully coupled a physically-based soil–plant hydrodynamic
model including water isotopologues advection–diffusion and
Bayesian statistics to retrieve the probability density of soil
water sources. Therefore, the inverse problem of reproducing
target plant water isotope ratios with the hydrodynamic
approach is posed in a probabilistic framework. While simple
linear models allow the use of analytical equations to directly
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express water sources probability functions, the non-linearity
of soil and plant hydraulic functions (see e.g. Van Genuch-
ten 1980) requires the use of iterative methods to find back
probability densities, like an EMMA analysis. The most com-
mon iterative method is the Markov Chain Monte Carlo simu-
lation (Brooks 1998), which repeatedly runs the (here,
hydrodynamic) times with different sets of parameter values
and compares the simulated and measured target outputs
(stem water isotopic signature). Hence, while the search
domain of the EMMA approach consists of water sources (pos-
sibly their past and present signatures), the search domain of
the combined hydrodynamic–Bayesian approach determines
the hydrodynamic model parametric space (i.e. the relative
uptake from water sources is indirectly affected by the model
parameter values). In the latter case, posterior probability den-
sities concern parameter values, and indirectly other model
outputs like the probability distribution of water sources. As
such, iterative methods require a very large number of simula-
tions before reaching convergence, where using simple models
both in terms of number of parameters and computational
requirements will be critical. Therefore, we envision that soil–
plant hydrodynamic models with simple big-root or parallel-
root geometries (Amenu & Kumar 2008; Kennedy et al. 2019)
or upscaled forms (Sulis et al. 2019; Vanderborght et al. 2021)
will be favoured over models with very descriptive geometries
(Javaux et al. 2008; Postma et al. 2017) when using Bayesian
elements to estimate the probability function of plant water
uptake profiles.

OUTLOOK

Plant water use and spatiotemporal dynamics in plant water
uptake are regulated by complex feedbacks and constrained
by conflicting demands of a plant’s vitality, such as optimiz-
ing stomatal control for carbon uptake and allocation, as well
as nutrient uptake. Consequently, we believe that improving
predictions of its plasticity over time and space will require
novel combinations of modelling approaches that will: (i)
enhance our knowledge in achieving a process-based under-
standing of plant water uptake plasticity, and (ii) significantly
advance our ability to correctly estimate its spatiotemporal
impact on water budgets. In this, we urge the interdisci-
plinary research community to merge their perspectives to
overcome current limitations and provide a more holistic
understanding of plant water uptake and its spatiotemporal
dynamics across scales.
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