1,331 research outputs found

    The impact of inocula carryover and inoculum dilution on the methane yields in batch methane potential tests

    Get PDF
    Batch studies are used to benchmark biohydrogen potential (BHP) and biomethane potential (BMP) yields from feed substrates, digestates residues and different process configurations. This study shows that BMP yields using cellulose can be biased positively by not diluting the initial sewage sludge inoculum and the bias is independent of starting inoculum volatile solids (VS) concentration. The carryover of BHP inoculum also increased the BMP yields when using cellulose as a substrate by up to 18.8%. Furthermore it was also observed that the dilution of BMP inoculum with deionised H2O reduced methane yields from cellulose by up to 132 ± 26 N mL-CH4 g-VS−1. Therefore it is proposed that inoculum and standard substrate controls (as used in this study) should be included in methane batch methodologies, particularly when using a pre-fermentation stage such as dark fermentation

    Locality refinement

    Get PDF
    We study re nement in the setting of local reasoning. In particular, we explore general translations that preserve and that break locality

    Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity

    Full text link
    We present a lightweight approach to Hoare-style specifications for fine-grained concurrency, based on a notion of time-stamped histories that abstractly capture atomic changes in the program state. Our key observation is that histories form a partial commutative monoid, a structure fundamental for representation of concurrent resources. This insight provides us with a unifying mechanism that allows us to treat histories just like heaps in separation logic. For example, both are subject to the same assertion logic and inference rules (e.g., the frame rule). Moreover, the notion of ownership transfer, which usually applies to heaps, has an equivalent in histories. It can be used to formally represent helping---an important design pattern for concurrent algorithms whereby one thread can execute code on behalf of another. Specifications in terms of histories naturally abstract granularity, in the sense that sophisticated fine-grained algorithms can be given the same specifications as their simplified coarse-grained counterparts, making them equally convenient for client-side reasoning. We illustrate our approach on a number of examples and validate all of them in Coq.Comment: 17 page

    Modular termination verification for non-blocking concurrency

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.We present Total-TaDA, a program logic for verifying the total correctness of concurrent programs: that such programs both terminate and produce the correct result. With Total-TaDA, we can specify constraints on a thread’s concurrent environment that are necessary to guarantee termination. This allows us to verify total correctness for nonblocking algorithms, e.g. a counter and a stack. Our specifications can express lock- and wait-freedom. More generally, they can express that one operation cannot impede the progress of another, a new non-blocking property we call non-impedance. Moreover, our approach is modular. We can verify the operations of a module independently, and build up modules on top of each other

    A comparison of efficient methods for the computation of Born gluon amplitudes

    Full text link
    We compare four different methods for the numerical computation of the pure gluonic amplitudes in the Born approximation. We are in particular interested in the efficiency of the various methods as the number n of the external particles increases. In addition we investigate the numerical accuracy in critical phase space regions. The methods considered are based on (i) Berends-Giele recurrence relations, (ii) scalar diagrams, (iii) MHV vertices and (iv) BCF recursion relations.Comment: 20 page

    Color-dressed recursive relations for multi-parton amplitudes

    Get PDF
    Remarkable progress inspired by twistors has lead to very simple analytic expressions and to new recursive relations for multi-parton color-ordered amplitudes. We show how such relations can be extended to include color and present the corresponding color-dressed formulation for the Berends-Giele, BCF and a new kind of CSW recursive relations. A detailed comparison of the numerical efficiency of the different approaches to the calculation of multi-parton cross sections is performed.Comment: 31 pages, 4 figures, 6 table
    • 

    corecore