
Locality Refinement

Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

Imperial College London
{td202, pg, mjw03}@ic.ac.uk

Abstract. We study refinement in the setting of local reasoning. In
particular, we explore general translations that preserve and that break
locality.

1 Introduction

Program refinement is the verifiable transformation of an abstract (high-level)
formal specification into a concrete (low-level) executable program. We study
program refinement in the setting of local reasoning.

The principle of local reasoning is that if we know how local computation
behaves on some state then we can infer its behavior if the state is extended:
it simply leaves the additional state unchanged. On this principle, O’Hearn and
Reynolds founded separation logic [10], which achieved remarkable success at
local reasoning about C-style heap update in a Hoare logic framework. Gen-
eralising separation logic techniques to more abstract state models, Calcagno,
Gardner and Zarfaty developed context logic [1], which has been successfully
applied to reasoning about the W3C DOM tree update library [7].

Previously, where context logic has been applied to reasoning about programs
that manipulate abstract state such as trees, sequences and terms, the reasoning
has been justified using that same abstract state, by proving soundness with
respect to an operational semantics. In this paper, we instead look at justifying
such reasoning in terms of implementations of the abstract state. This is an
instance of the classic problem of data refinement [9, 3], but with the added
twist that our emphasis is on local reasoning.

In this paper, our motivating example is the stepwise refinement of a module
that provides local commands for manipulating a tree structure, as illustrated
in Fig. 1. We show how this tree module T may be implemented using the
familiar separation logic heap module H and an abstract list module L. We then
show how this list module L can be implemented in terms of the heap H. Our
development provides two general techniques for verifying local modules with
respect to their implementations, which we term locality-preserving and locality-
breaking translations.

With the first technique, locality at the abstract level is, broadly speaking,
implemented by locality at the lower level. However, typically implementations
operate on a larger state than the abstract footprint, for instance, by performing
pointer surgery on the surrounding state. We introduce the notion of crust to

2 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

H

L

H + HH + LT

Fig. 1. Translations presented in this paper

capture this additional state. This crust intrudes on the context, and so breaks
the disjointness that exists at the high level. We then relate the high-level locality
with low-level locality through a fiction of disjointness.

With the second technique, locality at the abstract level is not preserved by
the translation. Although it is possible to think about such a translation using a
(large) crust, we instead prove soundness using a locality-breaking translation.
We establish a fiction of locality at the high-level, by demonstrating that the
translation preserves the axioms in any high-level context.

While we attempt to give the intuition behind our techniques, we omit the
full proofs of our results, which may be found in the full version of this paper [5].

Related Work There as been much work on abstraction and information hiding
in separation logic. In particular, the work of Parkinson and Bierman on abstract
predicates [11] addresses the problem of abstraction in a separation logic setting.
An abstract predicate is, to the client, an opaque object that encapsulates the
unknown representation of an abstract datatype. In their approach, abstract
predicates inherit some of the benefits of locality from separation logic: an oper-
ation on one abstract predicate leaves others alone. However, it does not permit
local reasoning within the structure represented by the abstract predicate, which
this paper addresses. Filipović et al. have also considered data refinement with
separation logic [6] showing how to handle aliasing issues in the refinement set-
ting. Their work has a similar theme to ours, choosing only to verify client
programs that use module commands correctly with regards to the specification
provided by the module. We differ in that we choose to focus on translations
between different levels of abstraction.

2 Preliminaries

2.1 State Models

We work with multiple data structures at multiple levels of abstraction. To
handle these structures in a uniform way, we model our program states using
context algebras. We will see that many standard state models fit this pattern.

Definition 1 (Context Algebra). A context algebra A = (C,D, •, ◦, I,0) con-
prises:

– a non-empty set of abstract states, D;
– a non-empty set of state contexts, C;
– a partially-defined associative context composition function, • : C × C ⇀ C;

Locality Refinement 3

– a partially-defined context application function, ◦ : C × D ⇀ D, with
c1 ◦ (c2 ◦ d) = (c1 • c2) ◦ d (undefined terms are considered equal);

– a distinguished set of identity contexts, I ⊆ C; and
– a distinguished set of empty states, 0 ⊆ D;

having the following properties: for all c ∈ C, d ∈ D, and i′ ∈ I

– i ◦ d is defined for some i ∈ I, and whenever i′ ◦ d is defined, i′ ◦ d = d;
– the relation {(c, d)|∃o ∈ 0. c ◦ o = d} is a total surjective function;
– i • c is defined for some i ∈ I, and whenever i′ • c is defined, i′ • c = c;
– c • i is defined for some i ∈ I, and whenever c • i′ is defined, c • i′ = c.

Example 1. The following are examples of context algebras:

(a) Heaps h ∈ H are defined as:

h ::= emp | a 7→ v | h ∗ h

where a ∈ N+ ranges over unique heap addresses, v ∈ Val ranges over val-
ues, and ∗ is associative and commutative with identity emp. (Heaps are
thus finite partial functions from addresses to values.) Heaps form the heap
context algebra, H = (H,H, ∗, ∗, {emp}, {emp}). All separation algebras [2]
can be viewed as context algebras in this way.

(b) Variable stores σ ∈ Σ are defined as:

σ ::= emp | x ⇀⇁ v | σ ∗ σ

where x ∈ Var ranges over unique program variables, v ∈ Val ranges over val-
ues, and ∗ is associative and commutative with identity emp. Variable stores
form the variable store context algebra, V = (Σ,Σ, ∗, ∗, {emp}, {emp}).

(c) Trees t ∈ T and tree contexts c ∈ C are defined as follows:

t ::= ∅ | n[t] | t� t
c ::= − | n[c] | t� c | c� t

where n ∈ N ranges over unique node identifiers, and � is associative with
identity ∅. The context composition and application are standard (substi-
tuting a tree or context in the hole). Trees and tree contexts form the Tree
context algebra, T = (C,T, •, ◦, {−}, {∅}).

(d) Given context algebras, A1 and A2, their product A1 × A2 (defined in the
natural fashion) is also a context algebra. For example, H × V and T × V
describe states consisting of trees or heaps, and variables stores.

2.2 Predicates

Predicates are either sets of abstract states (denoted p, q) or sets of state contexts
(denoted f, g). We do not fix a particular assertion language, although we do
use standard logical notation for conjunction, disjunction, negation and quan-
tification. We lift operations on states and contexts to predicates: for instance,
x 7→ v denotes the predicate {x 7→ v}; ∃v. x 7→ v denotes {x 7→ v | v ∈ Val};
the separating application f ◦ p denotes {c ◦ d | c ∈ f ∧ d ∈ p}; and so on. We
also use the notation

∏∗ to denote iterated ∗. We use set-theoretic notation for
predicate membership and containment.

4 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

2.3 Language Syntax

Definition 2 (Programming Language). Given a set of basic commands
ϕ ∈ Φ, the language LΦ is defined by the following grammar:

C ::=skip | ϕ | x := E | C; C | if B then C else C | while B do C |
procs r 1, . . . , rm1 := f1(x 1, . . . , x n1){C} · · · in C |
call r 1, . . . , rmk

:= f(E 1, ..., E nk
) | local x in C

where x , r , . . . ∈ Var range over program variables, E , E 1, . . . ∈ ExpVal range
over value expressions, B ∈ ExpBool ranges over boolean expressions, and f, f1, . . . ∈
PName range over procedure names.

2.4 Axiomatic Semantics

We give the semantics of the language LΦ as a program logic based on local
Hoare reasoning. The state model, A × V, combines two context algebras: the
variable store context algebra, V, used to interpret program variables; and the
context algebra, A, manipulated only by the commands of Φ. A set of axioms
Ax ⊆ P(DA × Σ) × Φ × P(DA × Σ) provides the semantics for the commands
of Φ, where DA is the set of abstract states from A and Σ is the set of variable
stores from V.

The judgements of our proof system have the form Γ ` {p} C {q}, where
p, q ∈ P(DA × Σ) are predicates, C ∈ LΦ is a program and Γ is a procedure
specification environment. A procedure specification environment associates pro-
cedure names with pairs of pre- and postconditions (parameterised by the ar-
gument and return values of the procedure respectively). The interpretation of
judgements is that, in the presence of procedures satisfying Γ , when executed
from a state satisfying p, the program C will either diverge or terminate in a
state satisfying q.

The proof rules of the program logic are given in Fig. 2. The semantics of
value expressions JE Kσ is the value of E in variable store σ. The variable store
ρ denotes an arbitrary variable store that evaluates all of the program variables
that are read but not written in each command under consideration. We write
vars(ρ) and vars(E) to denote the variables in ρ and E respectively.

The Frame rule is the natural frame rule for context algebras. The rules
Assgn, Local, PDef and PCall are standard, written in a slightly non-
standard way since we are working with context algebras together with the
variable store context algebra. Since we are treating variables as resource, the
Assgn rule not only requires the resource x ⇀⇁ v, but also the resource ρ contain-
ing the other variables used in E . For the Local rule, recall that the predicate
p specifies a set of pairs consisting of resource from DA and variable resource.
The predicate (IA × x ⇀⇁ −) ◦ p therefore specifies that the resource from DA
stays the same and, since (IA × x ⇀⇁ −) ◦ p 6= ∅, that the variable store has
been increased by x ⇀⇁ −. For the PDef and PCall rules, the procedures f
have parametrized predicates P = λ−→x .p as the precondition and Q = λ−→r .q as

Locality Refinement 5

Γ ` {p} C {q}
Γ ` {f ◦ p} C {f ◦ q} Frame

(p, ϕ, q) ∈ Ax

Γ ` {p} ϕ {q} Axiom

vars(ρ) = vars(E)− {x}
Γ ` {0A × (x ⇀⇁ v ∗ ρ)} x := E

˘
0A × (x ⇀⇁ JE K(x⇀⇁v∗ρ) ∗ ρ)

¯ Assgn

Γ ` {(IA × x ⇀⇁ −) ◦ p} C {(IA × x ⇀⇁ −) ◦ q} (IA × x ⇀⇁ −) ◦ p 6= ∅
Γ ` {p} local x in C {q} Local

∀(fi : P → Q) ∈ Γ. Γ ′, Γ `
{∃−→v . P (−→v)× (−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −)}

Ci
{∃−→w .Q(−→w)× (−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w)}

Γ ′, Γ ` {p} C {q}

Γ ′ ` {p} procs −→r 1 := f1(−→x 1){C1}, . . . ,−→r k := fk(−→x k){Ck} in C {q}
PDef

vars(ρ) = vars(E)− {−→r }

Γ, (f : P → Q) `

n
P (J−→E K(−→r ⇀⇁−→v ∗ρ))× (−→r ⇀⇁ −→v ∗ ρ)

o
call −→r := f(

−→
E)

{∃−→w .Q(−→w)× (−→r ⇀⇁ −→w ∗ ρ)}

PCall

Fig. 2. Some Local Hoare Logic rules for LΦ.

the postcondition, with P (−→v) = p[−→v /−→x] and Q(−→w) = q[−→w/−→r]. We omit the
Cons, Disj, Skip, Seq, If and While rules which are standard. For all of our
examples, the conjunction rule is admissible; in general, this is not the case.

3 Abstract Modules

The language given in §2 and its semantics are parameterised by a context
algebra, a set of commands and a set of axioms. Together, these parameters
constitute an abstract description of a module.

Definition 3 (Abstract Module). An abstract module A = (AA, ΦA,AxA)
consists of a context algebra AA with abstract state set DA, a set of commands
ΦA and a set of axioms AxA ⊆ P(DA ×Σ)× ΦA × P(DA ×Σ).

Notation. We write LA for the language LΦA . We write `A for the proof judge-
ment determined by the abstract module. When A can be inferred from context,
we may simply write ` instead of `A.

3.1 Heap Module

The first and most familiar abstract module we consider is the abstract heap
module, H = (H, ΦH,AxH), which extends the core language with standard
heap-update commands. The context algebra H was defined in Example 1. We
give the heap update commands in Definition 4, and the axioms for describing
the behavior of these commands in Definition 5.

6 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

Definition 4 (Heap Update Commands). The set of heap update commands
ΦH comprises: allocation, n := alloc(E); disposal, dispose(E , E ′); mutation,
[E] := E ′; and lookup n := [E].

Definition 5 (Heap Axioms). The set of heap axioms AxH comprises:

{
emp× n ⇀⇁ v ∗ ρ
∧ JE Kρ∗n⇀⇁v ≥ 1

}
n := alloc(E)

∃x. x 7→ − ∗ ...∗ x+ JE Kρ∗n⇀⇁v 7→ −
× n ⇀⇁ x ∗ ρ

{
JE Kρ 7→ − ∗ ...
∗ JE Kρ + JE ′Kρ 7→ − × ρ

}
dispose(E , E ′) {emp× ρ}

{JE Kρ 7→ − × ρ} [E] := E ′ {JE Kρ 7→ JE ′Kρ × ρ}
{JE Kρ∗n⇀⇁v 7→ x× n ⇀⇁ v ∗ ρ} n := [E] {JE Kρ∗n⇀⇁v 7→ x× n ⇀⇁ x ∗ ρ}

3.2 Tree Module

Another familiar abstract module that we consider is the abstract tree module,
T = (T , ΦT,AxT), which extends the core language with tree update commands
acting on a single tree, similar to a document in DOM. The tree context al-
gebra T was defined in Example 1. We give the the tree update commands in
Definition 6 and their corresponding axioms in Definition 7.

Definition 6 (Tree Update Commands). The set of tree update commands
ΦT comprises: relative traversal, getUp, getLeft, getRight, getFirst, getLast;
node creation, newNodeAfter; and subtree deletion deleteTree.

Definition 7 (Tree Axioms). The set of tree update axioms AxT includes:{
JE Kρ∗n⇀⇁n[t] �m[t′]
× n ⇀⇁ n ∗ ρ

}
n := getRight(E)

{
JE Kρ∗n⇀⇁n[t] �m[t′]
× n ⇀⇁m ∗ ρ

}
{
m[t′� JE Kρ∗n⇀⇁n[t]]
× n ⇀⇁ n ∗ ρ

}
n := getRight(E)

{
m[t′� JE Kρ∗n⇀⇁n[t]]
× n ⇀⇁ null ∗ ρ

}
{
JE Kρ∗n⇀⇁n[t′�m[t]]
× n ⇀⇁ n ∗ ρ

}
n := getLast(E)

{
JE Kρ∗n⇀⇁n[t′�m[t]]
× n ⇀⇁m ∗ ρ

}
{
JE Kρ∗n⇀⇁n[∅]
× n ⇀⇁ n ∗ ρ

}
n := getLast(E)

{
JE Kρ∗n⇀⇁n[∅]
× n ⇀⇁ null ∗ ρ

}
{JE Kρ[t]× ρ} newNodeAfter(E) {∃m. JE Kρ[t]�m[∅]× ρ}
{JE Kρ[t]× ρ} deleteTree(E) {∅× ρ}

The omitted axioms are analogous to those given above.

3.3 List Module

We will study an implementation of the tree module using lists of unique ad-
dresses. We therefore define an abstract module for manipulating lists whose
elements are unique, L = (L, ΦL,AxL). The list context algebra L is given in

Locality Refinement 7

Definition 10. The list update commands are given in Definition 11 and their
corresponding axioms are given in Definition 12.

Superficially, our abstract list stores resemble heaps, in the sense that we
have multiple lists each with unique addresses. For example, the list store (i Z⇒
v1 + v2 + v3) ∗ (j Z⇒w1 + v1) consists of two separate lists, at different addresses
i and j. We however treat the individual lists abstractly. For example, the same
list store can be written (i Z⇒v1 +−+v3)◦(i Z⇒v2∗j Z⇒w1 +v1) where, this time,
list context i Z⇒v1 +−+ v3 is separate from the two lists i Z⇒v2 ∗ j Z⇒w1 + v1.

We sometimes need to represent completed lists: that is, lists that cannot
be extended. For example, the command getHead requires a complete list to be
able to determine accurately the first element in the list. This is indicated by
surrounding the list in square brackets, as in j Z⇒ [w1 + v1]. Completed lists may
be separated into a context and sublist, as in j Z⇒ [w1 + −] ◦ j Z⇒ v1, but not
extended: j Z⇒w1 +− ◦ j Z⇒ [v1] is undefined.

Definition 8 (List Stores and Contexts). Lists l ∈ L, list contexts lc ∈ Lc,
list stores ls ∈ Ls, and list store contexts lsc ∈ Lsc are defined by:

l ::= ε | v | l + l ls ::= emp | i Z⇒ l | i Z⇒ [l] | ls ∗ ls
lc ::= − | lc+ l | l + lc lsc ::= ls | i Z⇒ lc | i Z⇒ [lc] | lsc ∗ lsc

where v ∈ Val ranges over values, which are taken to occur uniquely in each list
or list context, i ∈ Laddr ranges over list addresses, which are taken to occur
uniquely in each list store or list store context, + is taken to be associative with
identity ε, and ∗ is taken to be associative and commutative with identity emp.

Definition 9 (Application and Composition). The application of list store
contexts to list stores ◦ : Lsc× Ls ⇀ Ls is defined inductivelyby:

emp ◦ ls = ls

(lsc ∗ i Z⇒ l) ◦ ls = (lsc ◦ ls) ∗ i Z⇒ l

(lsc ∗ i Z⇒ [l]) ◦ ls = (lsc ◦ ls) ∗ i Z⇒ [l]
(lsc ∗ i Z⇒ lc) ◦ (ls ∗ i Z⇒ l) = (lsc ◦ ls) ∗ i Z⇒ lc[l/−]

(lsc ∗ i Z⇒ [lc]) ◦ (ls ∗ i Z⇒ l) = (lsc ◦ ls) ∗ i Z⇒ [lc[l/−]]

where lc[l/−] denotes the stand replacement of the hole in lc by l. The result of
the application is undefined, when either the right-hand side is badly formed or
no case applies. The composition • : Lsc× Lsc ⇀ Lsc is defined similarly.

Definition 10 (List-Store Context Algebra). The list-store context alge-
bra, L = (Lsc,Ls, •, ◦, {emp}, {emp}) is given by the above definitions.

Definition 11 (List Update Commands). The set of list commands ΦL com-
prises: lookup, getHead, getTail, getNext, getPrev; stack-style access, pop,
push; value removal and insertion, remove, insert; and construction and de-
struction, newList, deleteList.

8 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

Definition 12 (List Axioms). The set of list axioms AxL includes the follow-
ing small axioms: (the omitted axioms are analogous){

JE Kρ∗v⇀⇁v Z⇒ [v′ + l]
× v ⇀⇁ v ∗ ρ

}
v := E.getHead()

{
JE Kρ∗v⇀⇁v Z⇒ [v′ + l]
× v ⇀⇁ v′ ∗ ρ

}
{
JE Kρ∗v⇀⇁v Z⇒ [ε]
× v ⇀⇁ v ∗ ρ

}
v := E.getHead()

{
JE Kρ∗v⇀⇁v Z⇒ [ε]
× v ⇀⇁ null ∗ ρ

}
{
JE Kρ∗v⇀⇁v Z⇒JE ′Kρ∗v⇀⇁v + u
× v ⇀⇁ v ∗ ρ

}
v := E.getNext(E ′)

{
JE Kρ∗v⇀⇁v Z⇒JE ′Kρ∗v⇀⇁v + u
× v ⇀⇁ u ∗ ρ

}
{
JE Kρ∗v⇀⇁v Z⇒ [l + JE ′Kρ∗v⇀⇁v]
× v ⇀⇁ v ∗ ρ

}
v := E.getNext(E ′)

{
JE Kρ∗v⇀⇁v Z⇒ [l + JE ′Kρ∗v⇀⇁v]
× v ⇀⇁ null ∗ ρ

}
{JE Kρ Z⇒ [l]× ρ ∧ (JE ′Kρ 6∈ l)} E.push(E ′) {JE Kρ Z⇒ [JE ′Kρ + l]× ρ}

{JE Kρ Z⇒JE ′Kρ × ρ} E.remove(E ′) {JE Kρ Z⇒ε× ρ}{
JE Kρ Z⇒ [l + JE ′Kρ + l′]× ρ
∧ (JE ′′Kρ 6∈ l + JE ′Kρ + l′)

}
E.insert(E ′, E ′′) {JE Kρ Z⇒ [l + JE ′Kρ + JE ′′Kρ + l′]× ρ}

{∅ × i ⇀⇁ i} i := newList() {∃j. j Z⇒ [ε]× i ⇀⇁ j}
{JE Kρ Z⇒ [l]× ρ} E.deleteList() {∅ × ρ}

3.4 Combining Abstract Modules

We wish to combine abstract modules in a natural way, that enables programs
to be written that intermix commands from different modules.

Definition 13 (Abstract Module Combination). Given abstract modules
A1 = (AA1 , ΦA1 ,AxA1) and A2 = (AA2 , ΦA2 ,AxA2), their combination A1+A2 =
(AA1 ×AA2 , ΦA1 ⊕ ΦA2 ,AxA1 + AxA2) is defined by:

– AA1 ×AA2 is the product of context algebras;
– ΦA1 ⊕ ΦA2 = (ΦA1 × {1}) ∪ (ΦA2 × {2}) is the disjoint union of command

sets;
– AxA1 +AxA2 is the lifting of the axiom set AxA1 (and AxA2) to AxA1 +AxA2

using the empty states from AxA2 (and AxA1): formally, AxA1 + AxA2 =
{(π1p, (ϕ, 1), π1q) | (p, ϕ, q) ∈ AxA1} ∪ {(π2p, (ϕ, 2), π2q) | (p, ϕ, q) ∈ AxA1},
st. π1p = {(d, o, σ) | (d, σ) ∈ p, o ∈ 02}, π2p = {(o, d, σ) | (d, σ) ∈ p, o ∈ 01}.

When the command sets ΦA1 and ΦA2 are disjoint we may drop the tags
when referring to the commands in the combined abstract module. When we do
use the tags, we indicate them with an appropriately placed subscript.

An example of module combination is H+L, which we use in §5.1 as the basis
for implementing T. The combination comprises both the commands for manip-
ulating lists and for manipulating heaps, and their semantics are not allowed to
interfere with each other.

Locality Refinement 9

4 Module Translations

We define what it means to correctly implement one module in terms of another,
using translations which are reminiscent of downward simulations in [8].

Definition 14 (Sound Module Translation). A module translation A→ B
from abstract module A to abstract module B consists of

– a state translation function J−K : DA → P(DB), and
– a substitutive implementation function J−K : LA → LB obtained by substi-

tuting each basic command of ΦA with a call to a procedure written in LB.

A module translation is sound if, for all p, q ∈ P(DA ×Σ) and C ∈ LA,

`A {p} C {q} =⇒ `B {JpK} JCK {JqK} .

where the predicate translation J−K : P(DA × Σ) → P(DB × Σ) is the natural
lifting of the state translation given by JpK =

∨
(d,σ)∈pJdK× σ.

We will see that sometimes the module structure is preserved by the transla-
tions and sometimes it is not; also, sometimes the proof structure is preserved,
sometimes not. Notice that, since we are only considering partial correctness, it
is always acceptable for the implementation to diverge. In order to make termi-
nation guarantees, we could work with total correctness; our decision not to is
for simplicity and based on prevailing trends in separation logic and context logic
literature [10, 2, 1]. It is possible for our predicate translation to lose information.
For instance, if all predicates were unsatisfiable under translation, it would be
possible to implement every abstract command with skip; such an implementa-
tion is useless. It may be desirable to consider some injectivity condition which
distinguishes states and predicates of interest. Our results do not rely on this.

Modularity. A translation A1 → A2 can be lifted naturally to a translation
A1+B→ A2+B. We would hope that this translation would be sound, but this is
not necessarily the case. Here, we consider general techniques for defining trans-
lations that inductively transform proofs from module A1 to proofs in module
A2. These translations will be modular: the lifting gives a sound translation.

5 Locality-preserving Translations

Sometimes there is a close correspondence between locality in an abstract module
and locality in its implementation. Consider Fig. 3 which depicts a simple tree
(a), and representations of it in the heap module H (b), and in the combined
heap and list module H+L (c). In (b), a node is represented by a memory block
of four fields, recording the addresses of the left sibling, parent, right sibling and
first child. In (c), a node is represented by a list of the child nodes and a block of
two fields, recording the address of the parent and the child list. Just as the tree

10 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

(a) (b) (c)

Fig. 3. An abstract tree from T (a), and its representations in H (b) and H× Ls (c).

in (a) can be decomposed (as shown by the dashed lined), its representations can
also be decomposed: the representations preserve context application. However,
we must account for the pointers in the representations which cross the boundary
between context and subtree. This means that the representation of a tree must
be parameterised by an interface to the surrounding context. Similarly, contexts
are parameterised by interfaces both to the inner subtree and outer context. We
split the interface I into two components: the reference the surrounding context
makes in to the subtree (the in part), and the reference the subtree makes out
to the surrounding context (the out part).

Consider deleting the subtree indicated by the dashed lines in the figure. In
the abstract tree, this deletion only operates on the subtree: the axiom for dele-
tion has just the subtree as its precondition. In the implementations, however,
the deletion also operates on the representation of the surrounding context: in
(b), this is the parent node and right sibling; in (c), the parent node and child
list. We therefore introduce the idea of a crust predicate, eFI , that comprises the
minimal additional state required by an implementation. The crust is parame-
terised by interface I and an additional crust parameter F that fully determine
it. In the figure, the crusts for the subtree in (b) and (c) are shown shaded. (In
the list-based representation, the sibling nodes form part of the crust because
they are required for node insertion.)

We define a general notion of local translation, which incorporates three key
properties: application preservation, crust inclusion, and axiom correctness. Ap-
plication preservation, we have seen, requires that the low-level representations
of abstract states can be decomposed in the same manner as the abstract states
themselves. Crust inclusion requires that a substate’s crust is subsumed by any
outer context (together with its own outer crust). This allows us to frame on
arbitrary contexts despite the crust already being present (we simply remove
the inner crust from the context before applying it). Finally, axiom correctness
requires that the implementations of the basic commands meet the specifications
given by the abstract module’s axioms.

Theorem 1 (Locality-Preserving Translation). For interface set I = Iin×
Iout and crust parameter set F , a locality-preserving translation A → B con-
prises:

Locality Refinement 11

– representation functions 〈〈−〉〉− : DA×I → P(DB) and 〈〈−〉〉−− : CA×I×I →
P(CB);

– a crust predicate eFI , parameterised by I ∈ I and F ∈ F ; and
– a substitutive implementation function J−K : LA → LB,

for which the following properties hold:

1. application preservation: for all f ∈ P(CA), p ∈ P(DA) and I ∈ I,

〈〈f ◦A p〉〉I = ∃I ′. 〈〈f〉〉II′ ◦B 〈〈p〉〉I
′
;

2. crust inclusion: for all
−→
out′,

−→
out ∈ Iout, F ∈ F , c ∈ CA, there exist f ∈

P(CB), F ′ ∈ F such that, for all
−→
in ∈ Iin,(

∃−→in′.eF−→
in′,
−→
out′
• 〈〈c〉〉

−→
in′,
−→
out′

−→
in,
−→
out

)
= f • eF

′
−→
in,
−→
out

; and

3. axiom correctness: for all (p, ϕ, q) ∈ AxA,
−→
out ∈ Iout and F ∈ F ,

`B

{
(|p|)
−→
out,F

}
JϕK

{
(|q|)
−→
out,F

}
,

where (|p|)
−→
out,F =

∨
(d,σ)∈p(∃

−→
in.eF−→

in,
−→
out
◦ 〈〈d〉〉

−→
in,
−→
out)× σ.

This is a module translation, with the state translation function J−K : DA →
P(DB) defined by JdK = ∃−→in.eF−→

in,
−→
out
◦ 〈〈d〉〉

−→
in,
−→
out. A locality-preserving translation

is a sound translation.

This theorem is proved by inductively transforming a high-level proof in A to
the corresponding proof in B, preserving the structure. Application preservation
and crust inclusion allow us to transform a high-level frame into a low-level frame,
and axiom correctness allows us to soundly replace the high-level commands
with their implementations. The remaining proof rules transform naturally. If
we choose to include the conjunction rule in our proof system, then we would
need to additionally verify that our representation functions preserve conjunction
and also that the crust predicate ∃−→in.eF−→

in,
−→
out

is precise.

5.1 Module Translation: T → H + L

We now study the list-based implementation which uses a combination of the
heap and list modules given in §3. As we have seen, each node of the tree is
represented by a list of addresses of the node’s children and a memory block
of two fields that record the addresses of the parent node and child list. The
representation functions for trees and tree contexts are given below. The out
part of the interface, l ∈ (N+)∗, is a list of the addresses of the top-level nodes of

12 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

n .parent , n

n .children , n + 1

n := newNode() , n := alloc(2)

disposeNode(n) , dispose(n , 2)

proc n ′ := getLast(n){
local x in
x := [n .children] ;
n ′ := x .getTail()

}

proc n ′ := getRight(n){
local x , y in

x := [n .parent] ;
y := [x .children] ;
n ′ := y .getNext(n)

}

proc deleteTree(n){
local x , y , z in
x := [n .parent] ;
y := [x .children] ;
y .remove(n) ;
y := [n .children] ;
z := y .getHead() ;
while z 6= null do
call deleteTree(z) ;
z := y .getHead()

disposeList(y) ;
disposeNode(n)

}

Fig. 4. Selected procedures for the list-based implementation

the subtree. The in part of the interface, u ∈ N+, is the address of the subtree’s
parent node. (We abuse notation, freely combining heaps and list stores with ∗.)

〈〈∅〉〉ε,u ::= emp

〈〈n[t]〉〉n,u ::= ∃i, l. n 7→ u,i ∗ i Z⇒ [l] ∗ 〈〈t〉〉l,n

〈〈t1 � t2〉〉l,u ::= ∃l1, l2. (l
.= l1 + l2) ∗ 〈〈t1〉〉l1,u ∗ 〈〈t2〉〉l2,u

〈〈−〉〉l,ul′,u′ ::= (l .= l′) ∗ (u .= u′)

〈〈n[c]〉〉n,uI′ ::= ∃i, l. n 7→ u,i ∗ i Z⇒ [l] ∗ 〈〈c〉〉l,nI′

〈〈t� c〉〉l,uI′ ::= ∃l1, l2. (l
.= l1 + l2) ∗ 〈〈t〉〉l1,u ∗ 〈〈c〉〉l2,uI′

〈〈c� t〉〉l,uI′ ::= ∃l1, l2. (l
.= l1 + l2) ∗ 〈〈c〉〉l1,uI′ ∗ 〈〈t〉〉l2,u

The crust, eFI , parameterised by interface I = l, u and free logical variables
F = (l1, l2, u′), is defined as follows:

el1,l2,u
′

l,u ::= ∃i. u 7→ u′,i ∗ i Z⇒ [l1 + l + l2] ∗

(∗∏
n∈l1+l2

n 7→ u′

)

Definition 15 (Translation: T → H + L). For a root address r, the state
translation is defined as: JdK = ∃l.eε,ε,null

l,r ∗ 〈〈d〉〉l,r. A selection of the procedures
constituting the substitutive implementation is given in Fig. 4.

Theorem 2. The translation defined above is sound.

5.2 Module Translation: H + H → H

Another example of a local translation is given by implementing a pair of heap
modules H + H in a single heap H. The intuitive approach to this is to simply
treat the two heaps as disjoint portions of the same heap and use the same
commands for working with both.

Locality Refinement 13

Definition 16 (Translation: H+H→ H). The state translation is defined as:
J(h1, h2)K = {h1} ∗ {h2}. The implementation JCK is defined to be the detagging
of C: that is, heap commands from both abstract modules are substituted with the
corresponding command from the single abstract module. For example:

Jn := cons1(E 1, . . . , E k)K = n := cons(E 1, . . . , E k) = Jn := cons2(E 1, . . . , E k)K

Theorem 3. The translation defined above is sound.

(Note, the represetation function in this case does not preserve conjunction.)

6 Locality-breaking Translations

There is not always a close correspondence between locality in an abstract mod-
ule and locality in its implementation. For example, consider an implementation
of our list module that represents each list as a singly-linked list in the heap.
In the abstract module, the footprint of removing a specific element from a list
is just that element in that list. In the implementation however, the list is tra-
versed from its head to reach the element, which is then deleted by modifying the
pointer of its predecessor. The footprint is therefore the list fragment from the
head of the list to this predecessor, significantly more than the single list node
holding the value to be removed. While we could treat this additional footprint
as crust, in this case it seems more appropriate to abandon the preservation of
locality and instead use a translation that gives a fiction of locality.

Consider a translation from abstract module A to B. With the exception of
the frame rule and axioms, the proof rules for A can be mapped to the corre-
sponding proof rules of B: that is, from the translated premises we can directly
deduce the translated conclusion. To deal with the frame rule, we remove it from
proofs in A by ‘pushing’ applications of the frame rule to the leaves of the proof
tree. In this way, we can transform any local proof to a non-local proof.

Lemma 1 (Frame-free Derivations). Let A be an abstract module. If there
is a derivation of `A {p} C {q} then there is also a derivation that only uses
the frame rule in the following ways:

Γ ` {p} C {q}
(†)

Γ ` {f ◦ p} C {f ◦ q}

...
Γ ` {p} C {q}

Γ ` {(IA × σ) ◦ p} C {(IA × σ) ◦ q}

where (†) is either Axiom, Skip or Assgn.

By transforming a high-level proof of `A {p} C {q} in this way, we can es-
tablish `B {JpK} JCK {JqK} provided that we can prove that the implementation
of each command of ΦA satisfies the translation of each of its axioms under every
frame. (We can reduce considerations to any singleton frame by considering any
given frame as a disjunction of singletons and applying the Disj rule.)

14 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

x .value , x

x .next , x + 1

x := newNode() , x := alloc(2)

disposeNode(x) , dispose(x , 2)

proc i.remove(v){
local u , x , y , z in
x := [i] ;
u := [x .value] ;
y := [x .next] ;
if u = v

then
[E] := y ;
disposeNode(x)

else
u := [y .value] ;
while u 6= v do

x := y ;
y := [x .next] ;
u := [y .value]

z := [y .next] ;
[x .next] := z ;
disposeNode(y)

}

proc v := i.getNext(v ′){
local x in

x := [i] ;
v := [x .value] ;
while v 6= v ′ do

x := [x .next] ;
v := [x .value]

x := [x .next] ;
if x = null then v := x
else v := [x .value]

}

Fig. 5. Selected procedures for the linked-list implementation

Theorem 4 (Locality-breaking Translation). A locality-breaking transla-
tion A → B is one such that, for all c ∈ CA and (p, ϕ, q) ∈ AxA, the judgement
`B {J{c} ◦ pK} JϕK {J{c} ◦ qK} holds. A locality-breaking translation is sound.

If we include the conjunction rule, then we must verify that every singleton
context predicate is precise (i.e. the context algebra must be left-cancellative).

6.1 Module Translation: L → H

We show a locality-breaking translation L→ H, which implements abstract lists
with singly-linked lists in the heap.

Definition 17. The state translation from list-stores to heaps is defined induc-
tively as follows:

J∅K ::= emp Ji Z⇒ l ∗ lsK ::= False

Ji Z⇒ [l] ∗ lsK ::= ∃x. i 7→ x ∗ 〈〈l〉〉(x,null) ∗ JlsK

where
〈〈ε〉〉(x,y) ::= (x .= y) 〈〈v〉〉(x,y) ::= x 7→ v,y

〈〈l + l′〉〉(x,y) ::= ∃z. 〈〈l〉〉(x,z) ∗ 〈〈l′〉〉(z,y)

Note that not all list stores are realised by heaps: only ones in which every list is
complete. The intuitive reason behind this is that partial lists are purely abstract
notions that provide a useful means to our ultimate end, namely reasoning about
complete lists. The abstract module itself does not provide operations for creat-
ing or destroying partial lists, and so we would not expect to give specifications
for complete programs that concern partial lists.

Definition 18 (Translation: L → H). The state translation JpK is given by
Definition 17. A selection of the procedures constituting the substitutive imple-
mentation is given in Fig. 5.

Theorem 5. The translation defined above is sound.

Locality Refinement 15

Conclusion We have seen how to define abstract modules in such a way that
their combinations and implementations can be reasoned about in a modular
fashion. We have defined a number of useful abstract modules and shown how to
implement these high-level modules in terms of low-level modules. In particular,
we have shown how to implement an abstract tree module in terms of a heap
module and a list module. We have shown that we can further refine this by
implementing the abstract list module in terms of a heap module. We also made
the observation that we can combine multiple abstract heap modules into a
single abstract heap module. So the translations of this paper form a chain of
implementations, as shown in Fig. 1 in the introduction.

We have only scratched the surface of refinement in the setting of local rea-
soning. In particular, we are interested in exploring the fiction of disjointness in
more depth. With others, we have begun to investigate this fiction with work on
concurrent abstract modules [4], and we are keen to fathom fully these fascinat-
ing waters.
Acknowledgments: Gardner acknowledges support of a Microsoft/RAEng
Senior Research Fellowship. Dinsdale-Young and Wheelhouse acknowledge sup-
port of an EPSRC DTA award. We thank Mohammad Raza and Uri Zarfaty for
detailed discussions of this work.

References

1. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In POPL,
volume 40 of ACM SIGPLAN Notices, pages 271–282, 2005.

2. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In LICS, pages 366–378, 2007.

3. W. DeRoever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods
and Their Comparison. Cambridge University Press, New York, NY, USA, 1999.

4. T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Con-
current abstract predicates. In ECOOP’10 (to appear), 2010.

5. T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Abstract local reasoning.
Technical report, Imperial College London, 2010. http://www.doc.ic.ac.uk/

~td202/papers/alrfull.pdf.
6. I. Filipović, P. O’Hearn, N. Torp-Smith, and H. Yang. Blaming the client: on data

refinement in the presence of pointers. Formal Aspects of Computing, Online, 2009.
7. P. A. Gardner, G. D. Smith, M. J. Wheelhouse, and U. D. Zarfaty. Local hoare

reasoning about dom. In PODS ’08, pages 261–270, New York, NY, USA, 2008.
ACM.

8. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In Proc. of
the European symposium on programming on ESOP 86, pages 187–196, New York,
NY, USA, 1986. Springer-Verlag New York, Inc.

9. C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1:271–281,
1972.

10. P. W. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In CSL, Lecture Notes in Computer Science. Springer, 2001.

11. M. Parkinson and G. Bierman. Separation logic and abstraction. SIGPLAN Not.,
40(1):247–258, 2005.

16 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

A Correctness of the Locality-preserving Theory

We use the notation f −• g for the predicate {c | ∀c′, c′′ ∈ C. (c′′ = c • c′ ∧ c′ ∈
f) =⇒ c′′ ∈ g}, and f •−g for the analogous predicate defined using c′ • c (the
two right adjoints of context composition).

Assume that we are given:

– abstract modules A and B;
– a substitutive implementation function J−K : LA → LB;
– a set I = Iin × Iout of interfaces I = (

−→
in,
−→
out);

– a state representation function 〈〈−〉〉− : DA × I → P(DB);
– a context representation function 〈〈−〉〉−− : CA × I × I → P(CB); and
– a crust predicate eFI ∈ P(CB) parameterised by interface I ∈ I and by
F ∈ F , for some set F .

Definition 19 (Intermediate Translation Functions). We define the inter-
mediate state-predicate translation (|−|)− : P(D×Σ)× (Iout×F)→ P(DB×Σ)
and the intermediate context-predicate translation (|−|)−− : P(D × Σ) × (Iout ×
F)× (Iout ×F)→ P(DB ×Σ) as follows:

(|p|)
−→
out,F =

∨
(d,σ)∈p

(
∃−→in.eF

′
−→
in,
−→
out
◦ 〈〈d〉〉

−→
in,
−→
out
)
× σ

(|f |)
−→
out′,F ′

−→
out,F

=
∨

(c,σ)∈f

(
∀−→in′′.eF−→

in′′,
−→
out
−•
(
∃−→in′.eF

′
−→
in′,
−→
out′
• 〈〈c〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

))
× σ

Assume also that the following properties hold:

Property 1 (Application Preservation). Context application is preserved
by the translation 〈〈 〉〉I with respect to some interface I ′ = (

−→
in′,
−→
out′).

〈〈f ◦1 p〉〉I ≡ ∃I ′. 〈〈f〉〉II′ ◦2 〈〈p〉〉I
′

Property 2 (Crust Inclusion). For all
−→
out′,

−→
out ∈ Iout, F ∈ F , c ∈ CA there

exist q ∈ P(CB), F ′ ∈ F such that for all
−→
in ∈ Iin(

∃−→in′.eF−→
in′,
−→
out′
• 〈〈c〉〉

−→
in′,
−→
out′

−→
in,
−→
out

)
≡ q • eF

′
−→
in,
−→
out

.

Property 3 (Axiom Correctness). For all (p, ϕ, q) ∈ AxA,
−→
out ∈ Iout and

F ∈ F
`B

{
(|p|)
−→
out,F

}
ϕ
{

(|q|)
−→
out,F

}
We wish to establish the following:

Proposition 1. For all F,
−→
out and for all p, q ∈ P(AA ×Σ) and C ∈ LA

Γ `A {p} C {q} =⇒ JΓ K `B

{
(|p|)
−→
out,F

}
JCK

{
(|q|)
−→
out,F

}
,

Locality Refinement 17

where

JΓ K =
{
f : (|P |)

−→
out′,F ′

→ (|Q|)
−→
out′,F ′

∣∣∣∣ (f : P → Q) ∈ AxA
∧ −→out′ ∈ Iout ∧ F ′ ∈ F

}
.

The following lemma gives an alternative characterisation of the crust inclu-
sion property:

Lemma 2 (Crust Inclusion II). For all f ∈ P(CA) and all
−→
out′, F ,

−→
in and

−→
out,(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in,
−→
out

)
⊆ ∃F ′.

(
∀−→in′′.eF

′
−→
in′′,
−→
out
−•
(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

))
• eF

′
−→
in,
−→
out

.

Note that the converse of this property is trivially true.

Proof. Consider an arbitrary context assertion, f , and fix
−→
out′, F ,

−→
in and

−→
out.

Fix c′ with

c′ ∈∃−→in′.eF−→
in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in,
−→
out

≡
∨
c∈f

(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈c〉〉

−→
in′,
−→
out′

−→
in,
−→
out

)
.

There exists c′′ ∈ f such that

c′ ∈∃−→in′.eF−→
in′,
−→
out′
• 〈〈c′′〉〉

−→
in′,
−→
out′

−→
in,
−→
out

By the Crust Inclusion Property, there exist q and F ′ such that, for all
−→
in′′,(

∃−→in′.eF−→
in′,
−→
out′
• 〈〈c′′〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

)
≡ q • eF

′
−→
in′′,
−→
out

. (1)

Hence, c′ ∈ q•eF ′
−→
in,
−→
out

, and so there are c1 ∈ q and c2 ∈ eF
′
−→
in,
−→
out

with c′ = c1•c2.

Fix
−→
in′′ and c′2 ∈ eF

′
−→
in′′,
−→
out

. Since c1 • c′2 ∈ q • eF
′
−→
in′′,
−→
out

, it follows by (1) that

c1 • c′2 ∈
(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈c′′〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

)
⊆ ∃−→in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

.

The choice of c′2 was arbitrary, and so

∀c′2, c′′. c′2 ∈ eF−→
in′′,
−→
out
∧ c′′ = c1 • c′2 =⇒ c′′2 ∈ ∃

−→
in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

.

Hence
c1 ∈ eF

′
−→
in′′,
−→
out
−•
(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

)

18 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

and since the choice of
−→
in′′ was arbitrary,

c1 ∈ ∀
−→
in′′.eF

′
−→
in′′,
−→
out
−•
(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

)
.

Since c′ = c1 • c2,

c′ ∈ ∃F ′.
(
∀−→in′′.eF

′
−→
in′′,
−→
out
−•
(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

))
• eF

′
−→
in,
−→
out

.

Since the choice of c′ was arbitrary, we conclude(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in,
−→
out

)
⊆ ∃F ′.

(
∀−→in′′.eF

′
−→
in′′,
−→
out
−•
(
∃−→in′.eF−→

in′,
−→
out′
• 〈〈f〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

))
• eF

′
−→
in,
−→
out

.

ut

In order to prove Proposition 1, we use the Intermediate Translation Func-
tions, for which application preservation holds:

Lemma 3 (Application Preservation II). For all f ∈ P(CA × Σ), p ∈
P(DA ×Σ),

−→
out ∈ Iout and F ∈ F

(|f ◦ p|)
−→
out,F ≡ ∃−→out′, F ′. (|f |)

−→
out,F
−→
out′,F ′ ◦ (|p|)

−→
out′,F ′

.

Proof. By applying Lemma 2 and Property 1, we get:

(|f ◦ p|)
−→
out′,F ′

=
∨

(c, σ′) ∈ f
(d, σ) ∈ p

(
∃−→in′.eF

′
−→
in′,
−→
out′
◦ 〈〈c ◦ d〉〉

−→
in′,
−→
out′
)
× (σ′ ∗ σ)

=
∨

(c, σ′) ∈ f
(d, σ) ∈ p

(
∃−→in′.eF

′
−→
in′,
−→
out′
◦ ∃−→in,−→out. 〈〈c〉〉

−→
in′,
−→
out′

−→
in,
−→
out
◦ 〈〈d〉〉

−→
in,
−→
out
)
× (σ′ ∗ σ)

=
∨

(c, σ′) ∈ f
(d, σ) ∈ p

(
∃−→in,−→out.∃−→in′.eF

′
−→
in′,
−→
out′
• 〈〈c〉〉

−→
in′,
−→
out′

−→
in,
−→
out
◦ 〈〈d〉〉

−→
in,
−→
out
)
× (σ′ ∗ σ)

=
∨

(c, σ′) ∈ f
(d, σ) ∈ p


(
∃−→in,−→out.∃F.

(
∀−→in′′.eF−→

in′′,
−→
out
−•
(
∃−→in′.eF ′

−→
in′,
−→
out′
• 〈〈c〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

))
• eF−→

in,
−→
out
◦ 〈〈d〉〉

−→
in,
−→
out
)
× (σ′ ∗ σ)



=
∃−→out, F.

(∨
(c,σ′)∈f

(
∀−→in′′.eF−→

in′′,
−→
out
−•
(
∃−→in′.eF ′

−→
in′,
−→
out′
• 〈〈c〉〉

−→
in′,
−→
out′

−→
in′′,
−→
out

))
× σ′

)
◦(∨

(d,σ)∈p

(
eF−→
in,
−→
out
◦ 〈〈d〉〉

−→
in,
−→
out
)
× σ

)
= ∃−→out, F. (|f |)

−→
out′,F ′

−→
out,F

◦ (|p|)
−→
out,F

ut

Locality Refinement 19

The proof of Proposition 1 inductively transforms a proof in A to a proof in
B.

Proof (Proposition 1).

The proof is by induction on the structure of the proof of `A {p} C {q} and
cases on the last rule of the proof. We assume as the inductive hypothesis that
the translated premises have proofs in B and show how to derive from these a
proof of the translated conclusion. (We omit the procedure environment when
it plays no role in the derivation.)

Frame:

∀−→out′, F ′.
{

(|p|)
−→
out′,F ′}

C
{

(|q|)
−→
out′,F ′}

∀−→out′, F ′.
{

(|f |)
−→
out,F
−→
out′,F ′ ◦ (|p|)

−→
out′,F ′}

C
{

(|f |)
−→
out,F
−→
out′,F ′ ◦ (|q|)

−→
out′,F ′} Frame

{
∃−→out′, F ′. (|f |)

−→
out,F
−→
out′,F ′ ◦ (|p|)

−→
out′,F ′}

C
{
∃−→out′, F ′. (|f |)

−→
out,F
−→
out′,F ′ ◦ (|q|)

−→
out′,F ′} Disj

{
(|f ◦ p|)

−→
out,F

}
C
{

(|f ◦ q|)
−→
out,F

} Lemma 3

Consequence:

p′ ⊆ p

(|p′|)
−→
out,F ⊆ (|p|)

−→
out,F

{
(|p|)
−→
out,F

}
C
{

(|q|)
−→
out,F

} q ⊆ q′

(|q|)
−→
out,F ⊆ (|q′|)

−→
out,F{

(|p′|)
−→
out,F

}
C
{

(|q′|)
−→
out,F

} Cons

Disjunction:

∀i ∈ I.
{

(|pi|)
−→
out,F

}
C
{

(|qi|)
−→
out,F

}
{∨

i∈I (|pi|)
−→
out,F

}
C
{∨

i∈I (|qi|)
−→
out,F

} Disj

{(∣∣∨
i∈I pi

∣∣)−→out,F} C
{(∣∣∨

i∈I qi
∣∣)−→out,F}

20 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

Procedure Definition:

∀ (fi : P ′ → Q′) ∈ Γ,
−→
out′ ∈ Iout, F

′ ∈ F . JΓ
′, Γ K `

{
(|∃−→v . P (−→v)× (−→x i ⇀⇁ −→v ∗ −→r ⇀⇁ −)|)

−→
out′,F ′

}
Ci{

(|∃−→w .Q(−→w)× (−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w)|)
−→
out′,F ′

}

∀ (fi : P ′ → Q′) ∈ Γ,
−→
out′ ∈ Iout, F

′ ∈ F . JΓ
′, Γ K `

{
∃−→v . (|P (−→v)|)

−→
out′,F ′

× (−→x i ⇀⇁ −→v ∗ −→r ⇀⇁ −)
}

Ci{
∃−→w . (|Q(−→w)|)

−→
out′,F ′

× (−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w)
}

∀(fi : P → Q) ∈ JΓ K. JΓ ′, Γ K `
{∃−→v . P (−→v)× (−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −)}

Ci
{∃−→w .Q(−→w)× (−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w)}
(?)

(?) JΓ ′, Γ K `
{

(|p|)
−→
out,F

}
C
{

(|q|)
−→
out,F

}

JΓ ′K `

{
(|p|)
−→
out,F

}
procs −→r 1 := f1(−→x 1){C1}, . . . ,−→r k := fk(−→x k){Ck} in C{

(|q|)
−→
out,F

}
PDef

The cases for the remaining rules follow by the pointwise and variable-
preserving nature of the translation. ut

This completes the proof of Theorem 1.

B Correctness of the List-based Tree Implementation

In the following section we show that the selected implementations for com-
mands of our abstract tree module are correct. We do this following the general
theory for locality preserving translations laid out in § 5. We need to show
that the translation from the abstract tree module to the list-based implementa-
tion satisfies the application preservation, crust inclusion and axiom correctness
properties.

B.1 application preservation

We need to show that context application is preserved by the representation
functions for trees and tree contexts given in § 5.1.

Lemma 4 (Application Preservation).

〈〈f ◦ p〉〉I ≡ ∃I ′. 〈〈f〉〉II′ ∗ 〈〈p〉〉I
′

Locality Refinement 21

Proof. Fix tree t. We wish to show, by induction on the structure of context c,
that 〈〈c ◦ t〉〉I ≡ ∃I ′. 〈〈c〉〉II′ ∗ 〈〈t〉〉I

′
.

c = −: For 〈〈−〉〉II′ to be defined, I = I ′. Therefore,

∃I ′. 〈〈c〉〉II′ ∗ 〈〈t〉〉I
′
≡ 〈〈−〉〉II ∗ 〈〈t〉〉I

≡ 〈〈t〉〉I

≡ 〈〈c ◦ t〉〉I .

c = n[c′]: Assume I = n, p for some p (otherwise, 〈〈c〉〉II′ is not defined).

∃I ′. 〈〈c〉〉II′ ∗ 〈〈t〉〉I
′
≡ ∃I ′. 〈〈n[c′]〉〉n,pI′ ∗ 〈〈t〉〉I

′

≡ ∃I ′.∃i, l. n 7→ p,i ∗ i Z⇒ [l] ∗ 〈〈c′〉〉l,nI′ ∗ 〈〈t〉〉I
′

≡ ∃i, l. n 7→ p,i ∗ i Z⇒ [l] ∗ 〈〈c′ ◦ t〉〉l,n

≡ 〈〈n[c′ ◦ t]〉〉n,p

≡ 〈〈n[c′] ◦ t〉〉I .

c = c′ � t′: Assume I = l, p for some l and p.

∃I ′. 〈〈c〉〉II′ ∗ 〈〈t〉〉I
′
≡ ∃I ′. 〈〈c′ � t′〉〉l,pI′ ∗ 〈〈t〉〉I

′

≡ ∃I ′.∃l1, l2. (l
.= l1 + l2) ∗ 〈〈c′〉〉l1,pI′ ∗ 〈〈t′〉〉l2,p ∗ 〈〈t〉〉I

′

≡ ∃l1, l2. (l
.= l1 + l2) ∗ 〈〈c′ ◦ t〉〉l1,p ∗ 〈〈t′〉〉l2,p

≡ 〈〈(c′ ◦ t)� t′〉〉l,p

≡ 〈〈(c′ � t′) ◦ t〉〉I .

The remaining case (c = t′ � c′) follows a similar pattern.
By induction, for all trees t and contexts c, 〈〈c ◦ t〉〉I ≡ ∃I ′. 〈〈c〉〉II′ ∗ 〈〈t〉〉I

′
.

Suppose that f is a set of contexts and p a set of trees.

〈〈f ◦ p〉〉I ≡ 〈〈
∨

c∈f,t∈p

c ◦ t〉〉I

≡
∨

c∈f,t∈p

〈〈c ◦ t〉〉I

≡
∨

c∈f,t∈p

∃I ′. 〈〈c〉〉II′ ∗ 〈〈t〉〉I
′

≡ ∃I ′.
∨

c∈f,t∈p

〈〈c〉〉II′ ∗ 〈〈t〉〉I
′

≡ ∃I ′. 〈〈f〉〉II′ ∗ 〈〈p〉〉I
′
.

ut

22 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

B.2 crust inclusion

Lemma 5 (Crust Inclusion). For all
−→
out′, F,

−→
out, c there exist q, F ′ such that

for all
−→
in (

∃−→in′.eF−→
in′,
−→
out′
∗ 〈〈c〉〉

−→
in′,
−→
out′

−→
in,
−→
out

)
≡ q ∗ eF

′
−→
in,
−→
out

.

Proof. The proof is by induction on the structure of the context c.
c = −: Choose F ′ = F and choose q = emp if

−→
out′ =

−→
out and q = False

otherwise. If
−→
out′ 6= −→out then both sides are equivalent to False, so assume that−→

out′ =
−→
out. Observe

∃−→in′.eF−→
in′,
−→
out′
∗ 〈〈−〉〉

−→
in′,
−→
out′

−→
in,
−→
out

≡ eF−→
in,
−→
out
∗ emp

≡ q ∗ eF
′
−→
in,
−→
out

.

c = n[c′]: By the inductive hypothesis, there exist q′, F ′ such that for all
−→
in

∃l.eε,ε,
−→
out′

l,n ∗ 〈〈c′〉〉l,n−→
in,
−→
out
≡ q′ ∗ eF

′
−→
in,
−→
out

.

Choose q = eF−→
in′,
−→
out′
∗ −→in′ .= n ∗ q′ and F ′ as given. Observe

∃−→in′.eF−→
in′,
−→
out′
∗ 〈〈n[c′]〉〉

−→
in′,
−→
out′

−→
in,
−→
out

≡ ∃−→in′.eF−→
in′,
−→
out′
∗ −→in′ .= n ∗ ∃l, i. n 7→ −→out′,i ∗ i Z⇒ [l] ∗ 〈〈c′〉〉l,n−→

in,
−→
out

≡ ∃−→in′.eF−→
in′,
−→
out′
∗ −→in′ .= n ∗ ∃l.eε,ε,

−→
out′

l,n ∗ 〈〈c′〉〉l,n−→
in,
−→
out

≡ ∃−→in′.eF−→
in′,
−→
out′
∗ −→in′ .= n ∗ q′ ∗ eF

′
−→
in,
−→
out

≡ q ∗ eF
′
−→
in,
−→
out

.

c = t′� c′: Observe that there is exactly one choice of l1 such that 〈〈t′〉〉l1,
−→
out′

is defined. Let l̂1 be that choice. Observe also that there exists a q′ such that

〈〈t′〉〉l̂1,
−→
out′ ≡ q′ ∗

∗∏
n∈l̂1

n 7→ −→out′.

Let (l′1, l
′
2, p
′) = F . By the inductive hypothesis, there exist q′′, F ′ such that for

all
−→
in

∃l2.e
l′1+l̂1,l

′
2,
−→
out′

l2,n
∗ 〈〈c′〉〉l2,n−→

in,
−→
out
≡ q′′ ∗ eF

′
−→
in,
−→
out

.

Locality Refinement 23

Choose q = q′ ∗ q′′ and F ′ as given by the inductive hypothesis. Observe

∃−→in′.eF−→
in′,
−→
out′
∗ 〈〈t′ � c′〉〉

−→
in′,
−→
out′

−→
in,
−→
out

≡
∃−→in′.∃i.−→out′ 7→ p′, i,∗i Z⇒ [l′1 +

−→
in′ + l′2]

∗
(∏∗

n∈l′1+l′2
n 7→ −→out′

)
∗ 〈〈t′〉〉l̂1,

−→
out′ ∗ ∃l1.

−→
in′

.= l̂1 + l2 ∗ 〈〈c′〉〉l2,
−→
out′

−→
in,
−→
out

≡
∃l2.∃i.

−→
out′ 7→ p′,i ∗ i Z⇒ [l′1 + l̂1 + l2 + l′2]

∗
(∏∗

n∈l′1+l′2
n 7→ −→out′

)
∗ q′ ∗

(∏∗
n∈l̂1 n 7→

−→
out′

)
∗ 〈〈c′〉〉l2,

−→
out′

−→
in,
−→
out

≡ q′ ∗ ∃l2.e
l′1+l̂1,l

′
2,
−→
out

l2,
−→
out′

∗ 〈〈c′〉〉l2,
−→
out′

−→
in,
−→
out

≡ q′ ∗ q′′ ∗ eF
′
−→
in,
−→
out

.

The remaining case is proved in a similar fashion, and hence, for all
−→
out′, F,

−→
out, c

there exist q, F ′ such that for all
−→
in(

∃−→in′.eF−→
in′,
−→
out′
∗ 〈〈c〉〉

−→
in′,
−→
out′

−→
in,
−→
out

)
≡ q ∗ eF

′
−→
in,
−→
out

.

ut

B.3 axiom correctness

We need to show that the high-level axioms for the abstract tree module are
preserved by the list-based implementation. We do this in the presence of a
specification environment which allows for recursive procedure calls.

Let the procedure environment Γ be defined as,

Γ ::= { getRight :
(
λe. ∃l.eFl,u ∗ 〈〈n[t]�m[t′] ∧ (e = n)〉〉l,u

)
→
(
λv.∃l.eFl,u ∗ 〈〈n[t]�m[t′] ∧ (v = m)〉〉l,u

)
getRight :

(
λe. ∃l.eFl,u ∗ 〈〈m[t′ � n[t]] ∧ (e = n)〉〉l,u

)
→
(
λv.∃l.eFl,u ∗ 〈〈m[t′ � n[t]] ∧ (v = null)〉〉l,u

)
getLast :

(
λe. ∃l.eFl,u ∗ 〈〈n[t′ �m[t]] ∧ (e = n)〉〉l,u

)
→
(
λv.∃l.eFl,u ∗ 〈〈n[t′ �m[t]] ∧ (v = m)〉〉l,u

)
getLast :

(
λe. ∃l.eFl,u ∗ 〈〈n[∅] ∧ (e = n)〉〉l,u

)
→
(
λv.∃l.eFl,u ∗ 〈〈n[∅] ∧ (v = null)〉〉l,u

)
deleteTree :

(
λe. ∃l.eFl,u ∗ 〈〈n[t] ∧ (e = n)〉〉l,u

)
→
(
∃l.eFl,u ∗ 〈〈∅〉〉l,u

)
}

We need to show that the bodies of the low-level implementations for the high-
level tree commands satisfy this procedure specification environment.

24 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

Lemma 6 (getRight body correctness). The implementation of getRight
given in § 5.1 satisfies the specification environment.

Γ `

{
∃e, l.eFl,u ∗ 〈〈n[t] �m[t′] ∧ (e = n)〉〉l,u × n ⇀⇁ e ∗ n′ ⇀⇁ −

}
getRightbody{

∃v, l.eFl,u ∗ 〈〈n[t]�m[t′] ∧ (v = m)〉〉l,u × n ⇀⇁ − ∗ n′ ⇀⇁ v
}

Γ `

{
∃e, l.eFl,u ∗ 〈〈m[t′ � n[t]] ∧ (e = n)〉〉l,u × n ⇀⇁ e ∗ n′ ⇀⇁ −

}
getRightbody{

∃v, l.eFl,u ∗ 〈〈m[t′ � n[t]] ∧ (v = null)〉〉l,u × n ⇀⇁ − ∗ n′ ⇀⇁ v
}

Proof. There are two cases to prove. In the first case the node n has a right
sibling. Let F = l1, l2, u

′.

{
∃e, l.eFl,u ∗ 〈〈n[t]�m[t′] ∧ (e = n)〉〉l,u × n ⇀⇁ e ∗ n′ ⇀⇁ −

}
∃i, l

′, j. u 7→ u′,j ∗ j Z⇒ [l1 + n+m+ l2] ∗

(∗∏
x∈l1+l2

x 7→ u

)
∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n ∗ 〈〈m[t′]〉〉m,u × n ⇀⇁ n ∗ n′ ⇀⇁ −


{u 7→ u′,j ∗ j Z⇒ [l1 + n+m+ l2] ∗ n 7→ u,i× n ⇀⇁ n ∗ ′ ⇀⇁ −}
local x , y in{

u 7→ u′,j ∗ j Z⇒ [l1 + n+m+ l2] ∗ n 7→ u,i
× n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁ − ∗ y ⇀⇁ −

}
x := [n .parent] ;{
u 7→ u′,j ∗ j Z⇒ [l1 + n+m+ l2] ∗ n 7→ u,i
× n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁ u ∗ y ⇀⇁ −

}
y := [x .children] ;{
u 7→ u′,j ∗ j Z⇒ [l1 + n+m+ l2] ∗ n 7→ u,i
× n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁ u ∗ y ⇀⇁ j

}
n ′ := y .getNext(n){
u 7→ u′,j ∗ j Z⇒ [l1 + n+m+ l2] ∗ n 7→ u,i
× n ⇀⇁ n ∗ n′ ⇀⇁m ∗ x ⇀⇁ u ∗ y ⇀⇁ j

}
{u 7→ u′,j ∗ j Z⇒ [l1 + n+m+ l2] ∗ n 7→ u,i× n ⇀⇁ n ∗ n′ ⇀⇁m}∃i, l

′, j. u 7→ u′,j ∗ j Z⇒ [l1 + n+m+ l2] ∗

(∗∏
x∈l1+l2

x 7→ u

)
∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n ∗ 〈〈m[t′]〉〉m,u × n ⇀⇁ n ∗ n′ ⇀⇁m

{
∃v, l.eFl,u ∗ 〈〈n[t]�m[t′] ∧ (v = m)〉〉l,u × n ⇀⇁ − ∗ n′ ⇀⇁ v

}

Locality Refinement 25

In the second case the node n does not have a right sibling. Let F = l1, l2, u
′.

{
∃e, l.eFl,u ∗ 〈〈m[t′ � n[t]] ∧ (e = n)〉〉l,u × n ⇀⇁ e ∗ n′ ⇀⇁ −

}

∃i, l′, j, l′′, k. u 7→ u′,k ∗ k Z⇒ [l1 +m+ l2] ∗

(∗∏
x∈l1+l2

x 7→ u

)
∗m 7→ u,i ∗ i Z⇒ [l′ + n] ∗ 〈〈t′〉〉l′,m ∗ n 7→ m,j ∗ j Z⇒ [l′′] ∗ 〈〈t〉〉l′′,n
× n ⇀⇁ n ∗ n′ ⇀⇁ −


{m 7→ u,i ∗ i Z⇒ [l′ + n] ∗ n 7→ m,j × n ⇀⇁ n ∗ n′ ⇀⇁ −}
local x , y in{

m 7→ u,i ∗ i Z⇒ [l′ + n] ∗ n 7→ m,j
× n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁ − ∗ y ⇀⇁ −

}
x := [n .parent] ;
{m 7→ u,i ∗ i Z⇒ [l′ + n] ∗ n 7→ m,j × n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁m ∗ y ⇀⇁ −}
y := [x .children] ;
{m 7→ u,i ∗ i Z⇒ [l′ + n] ∗ n 7→ m,j × n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁m ∗ y ⇀⇁ i}
n ′ := y .getNext(n)
{m 7→ u,i ∗ i Z⇒ [l′ + n] ∗ n 7→ m,j × n ⇀⇁ n ∗ n′ ⇀⇁ null ∗ x ⇀⇁m ∗ y ⇀⇁ i}

{m 7→ u,i ∗ i Z⇒ [l′ + n] ∗ n 7→ m,j × n ⇀⇁ n ∗ n′ ⇀⇁ null }
∃i, l′, j, l′′, k. u 7→ u′,k ∗ k Z⇒ [l1 +m+ l2] ∗

(∗∏
x∈l1+l2

x 7→ u

)
∗m 7→ u,i ∗ i Z⇒ [l′ + n] ∗ 〈〈t′〉〉l′,m ∗ n 7→ m,j ∗ j Z⇒ [l′′] ∗ 〈〈t〉〉l′′,n
× n ⇀⇁ n ∗ n′ ⇀⇁ null

{
∃v, l.eFl,u ∗ 〈〈m[t′ � n[t]] ∧ (v = null)〉〉l,u × n ⇀⇁ − ∗ n′ ⇀⇁ v

}
ut

Lemma 7 (getLast body correctness). The implementation of getLast given
in § 5.1 satisfies the specification environment.

Γ `

{
∃e, l.eFl,u ∗ 〈〈n[t′ �m[t]] ∧ (e = n)〉〉l,u × n ⇀⇁ e ∗ n′ ⇀⇁ −

}
getLastbody{

∃v, l.eFl,u ∗ 〈〈n[t′ �m[t]] ∧ (v = m)〉〉l,u × n ⇀⇁ − ∗ n′ ⇀⇁ v
}

Γ `

{
∃e, l.eFl,u ∗ 〈〈n[∅] ∧ (e = n)〉〉l,u × n ⇀⇁ e ∗ n′ ⇀⇁ −

}
getLastbody{

∃v, l.eFl,u ∗ 〈〈n[∅] ∧ (v = null)〉〉l,u × n ⇀⇁ − ∗ n′ ⇀⇁ v
}

26 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

Proof. There are two cases to prove. In the first case the node n has at least one
child. Let F = l1, l2, u

′.{
∃e, l.eFl,u ∗ 〈〈n[t′ �m[t]] ∧ (e = n)〉〉l,u × n ⇀⇁ e ∗ n′ ⇀⇁ −

}{
∃l, i, l′.eFl,u ∗ n 7→ u,i ∗ i Z⇒ [l′ +m] ∗ 〈〈t′〉〉l′,n ∗ 〈〈m[t]〉〉m,n × n ⇀⇁ n ∗ n′ ⇀⇁ −

}
{n 7→ u,i ∗ i Z⇒ [l′ +m]× n ⇀⇁ n ∗ n′ ⇀⇁ −}
local x in
{n 7→ u,i ∗ i Z⇒ [l′ +m]× n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁ −}
x := [n .children] ;
{n 7→ u,i ∗ i Z⇒ [l′ +m]× n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁ i}
n ′ := x .getTail()
{n 7→ u,i ∗ i Z⇒ [l′ +m]× n ⇀⇁ n ∗ n′ ⇀⇁m ∗ x ⇀⇁ i}

{n 7→ u,i ∗ i Z⇒ [l′ +m]× n ⇀⇁ n ∗ n′ ⇀⇁m}{
∃l, i, l′.eFl,u ∗ n 7→ u,i ∗ i Z⇒ [l′ +m] ∗ 〈〈t′〉〉l′,n ∗ 〈〈m[t]〉〉m,n × n ⇀⇁ n ∗ n′ ⇀⇁m

}{
∃v, l.eFl,u ∗ 〈〈n[t′ �m[t]] ∧ (v = m)〉〉l,u × n ⇀⇁ − ∗ n′ ⇀⇁ v

}
In the second case the node n does not have any children. Let F = l1, l2, u

′.{
∃e, l.eFl,u ∗ 〈〈n[∅] ∧ (e = n)〉〉l,u × n ⇀⇁ e ∗ n′ ⇀⇁ −

}{
∃l, i.eFl,u ∗ n 7→ u,i ∗ i Z⇒ [ε]× n ⇀⇁ n ∗ n′ ⇀⇁ −

}
{n 7→ u,i ∗ i Z⇒ [ε]× n ⇀⇁ n ∗ n′ ⇀⇁ −}
local x in
{n 7→ u,i ∗ i Z⇒ [ε]× n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁ −}
x := [n .children] ;
{n 7→ u,i ∗ i Z⇒ [ε]× n ⇀⇁ n ∗ n′ ⇀⇁ − ∗ x ⇀⇁ i}
n ′ := x .getTail()
{n 7→ u,i ∗ i Z⇒ [ε]× n ⇀⇁ n ∗ n′ ⇀⇁ null ∗ x ⇀⇁ i}
{n 7→ u,i ∗ i Z⇒ [ε]× n ⇀⇁ n ∗ n′ ⇀⇁ null }{
∃l, i.eFl,u ∗ n 7→ u,i ∗ i Z⇒ [ε]× n ⇀⇁ n ∗ n′ ⇀⇁ null

}{
∃v, l.eFl,u ∗ 〈〈n[∅] ∧ (v = null)〉〉l,u × n ⇀⇁ − ∗ n′ ⇀⇁ v

}
ut

Lemma 8 (deleteTree body correctness). The implementation of deleteTree
given in §5.1 satisfies the procedure specification environment.

Γ `

{
∃e, l.eFl,u ∗ 〈〈n[t] ∧ (e = n)〉〉l,u × n ⇀⇁ e

}
deleteTreebody{

∃l.eFl,u ∗ 〈〈∅〉〉l,u × n ⇀⇁ −
}

Locality Refinement 27

Proof. Let F = l1, l2, u
′.{

∃e, l.eFl,u ∗ 〈〈n[t] ∧ (e = n)〉〉l,u × n ⇀⇁ e
}

∃i, l
′, j. u 7→ u′,j ∗ j Z⇒ [l1 + n+ l2] ∗

(∗∏
x∈l1+l2

x 7→ u

)
∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n × n ⇀⇁ n

{
u 7→ u′,j ∗ j Z⇒ [l1 + n+ l2] ∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n × n ⇀⇁ n

}
local x , y , z in{

u 7→ u′,j ∗ j Z⇒ [l1 + n+ l2] ∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n
× n ⇀⇁ n ∗ x ⇀⇁ − ∗ y ⇀⇁ − ∗ z ⇀⇁ −

}
x := [n .parent] ;{
u 7→ u′,j ∗ j Z⇒ [l1 + n+ l2] ∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n
× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ − ∗ z ⇀⇁ −

}
y := [x .children] ;{
u 7→ u′,j ∗ j Z⇒ [l1 + n+ l2] ∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n
× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ j ∗ z ⇀⇁ −

}
y .remove(n) ;{
u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n
× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ j ∗ z ⇀⇁ −

}
y := [n .children] ;{
u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i ∗ i Z⇒ [l′] ∗ 〈〈t〉〉l′,n
× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁ −

}


u 7→ u′,j ∗ j Z⇒ [l1 + l2]
∗ n 7→ u,i ∗ i Z⇒ [ε]
× n ⇀⇁ n ∗ x ⇀⇁ u
∗ y ⇀⇁ i ∗ z ⇀⇁ −

 ∨

∃m, t′, t′′, l′′.
u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i

∗ i Z⇒ [m+ l′′] ∗ 〈〈m[t′]� t′′〉〉m+l′′,n

× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁ −




z := y .getHead() ;

u 7→ u′,j ∗ j Z⇒ [l1 + l2]
∗ n 7→ u,i ∗ i Z⇒ [ε]
× n ⇀⇁ n ∗ x ⇀⇁ u
∗ y ⇀⇁ i ∗ z ⇀⇁ null

 ∨

∃m, t′, t′′, l′′.
u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i

∗ i Z⇒ [m+ l′′] ∗ 〈〈m[t′]� t′′〉〉m+l′′,n

× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁m




while z 6= null do{
∃m, t′, t′′, l′′. u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i ∗ i Z⇒ [m+ l′′]
∗ 〈〈m[t′]� t′′〉〉m+l′′,n × n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁m

}
call deleteTree(z) ;{
∃m, t′′, l′′. u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i ∗ i Z⇒ [l′′] ∗ 〈〈t′′〉〉l′′,n
× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁m

}


u 7→ u′,j ∗ j Z⇒ [l1 + l2]
∗ n 7→ u,i ∗ i Z⇒ [ε]
× n ⇀⇁ n ∗ x ⇀⇁ u
∗ y ⇀⇁ i ∗ z ⇀⇁ −

 ∨

∃m, t′, t′′, l′′.
u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i

∗ i Z⇒ [m+ l′′] ∗ 〈〈m[t′]� t′′〉〉m+l′′,n

× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁ −




z := y .getHead()

u 7→ u′,j ∗ j Z⇒ [l1 + l2]
∗ n 7→ u,i ∗ i Z⇒ [ε]
× n ⇀⇁ n ∗ x ⇀⇁ u
∗ y ⇀⇁ i ∗ z ⇀⇁ null

 ∨

∃m, t′, t′′, l′′.
u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i

∗ i Z⇒ [m+ l′′] ∗ 〈〈m[t′]� t′′〉〉m+l′′,n

× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁m




28 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse{
u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i ∗ i Z⇒ [ε]
× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁ null

}
disposeList(y) ;
{u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗ n 7→ u,i× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁ null }
disposeNode(n)
{u 7→ u′,j ∗ j Z⇒ [l1 + l2]× n ⇀⇁ n ∗ x ⇀⇁ u ∗ y ⇀⇁ i ∗ z ⇀⇁ null }

{u 7→ u′,j ∗ j Z⇒ [l1 + l2]× n ⇀⇁ n}{
∃i, l′, j. u 7→ u′,j ∗ j Z⇒ [l1 + l2] ∗

(∗∏
x∈l1+l2

x 7→ u

)
× n ⇀⇁ n

}
{
∃l.eFl,u ∗ 〈〈∅〉〉l,u × n ⇀⇁ −

}
ut

Finally, we observe that for all u, F and (p,−→r := f(
−→
E), q) ∈ AxT

Γ ` {(|p|)u,F } call −→r := f(
−→
E) {(|q|)u,F }

where (|p|)u,F =
∨

(d,σ)∈p ∃l.eFl,u ∗ 〈〈d〉〉l,u × σ. This follows directly from the
PCall rule and the definition of Γ .

C Correctness of the Locality-breaking Theory

Assume that we are given:

– abstract modules A and B;
– a substitutive implementation function J−K : LA → LB;
– a pointwise predicate translation function J−K : P(DA × Σ) → P(DB × Σ);

and
– for every (p, ϕ, q) ∈ AxA and c ∈ CA, a derivation of `B {J{c} ◦ pK} JϕK {J{c} ◦ qK}.

We wish to establish the following:

Proposition 2. For all p, q ∈ P(AA ×Σ) and C ∈ LA

Γ `A {p} C {q} =⇒ JΓ K `B {JpK} JCK {JqK} ,

where
JΓ K = {f : JP K→ JQK | (f : JP K→ JQK) ∈ AxA} .

To do so, we shall use the frame-elimination lemma previously described,
which we prove in detail below.

Lemma 1 (Frame Free). Suppose that A is an extension with AA a left-
cancellative context algebra. If there is a derivation of `A {p} C {q} then there

Locality Refinement 29

is also a derivation that only uses the frame rule in the following ways:

Γ ` {p} C {q}
(†)

Γ ` {f ◦ p} C {f ◦ q} Frame (2)
...

Γ ` {p} C {q}
Γ ` {(IA × fV) ◦ p} C {(IA × fV) ◦ q} Frame (3)

where (†) is either an axiom of AxA, Skip or Assgn.

Proof. We show a more general result, that for a derivation of Γ `A {p} C {q}
there is a derivation of F (Γ) `A {p} C {q} with the required property, where

F (Γ) = {f : (f ◦ P)→ (f ◦Q) | f ∈ P(CA), (f : P → Q) ∈ Γ)}.

Clearly, Γ ⊆ F (Γ) = F (F (Γ)). Since the procedure environment (and it’s trans-
formation) are only relevant to the PDef and PCall rules, we omit them when
considering the other rules.

The proof is by induction on the structure of the proof. If the last rule of the
proof is not Frame or PDef then it is simple to transform the proof: transform
the proofs of the premises by induction and simply apply the last rule with F (Γ)
in place of Γ .

Consider case when the frame rule is the last rule applied:

...
{p}C {q}

(‡)

{f ◦ p}C {f ◦ q} Frame

By applying the disjunction rule, we can reduce the problem to the case of
singleton frames {c}, transforming the proof as follows:

∀c ∈ f

...
{p}C {q}

(‡)

{{c} ◦ p}C {{c} ◦ q} Frame

{f ◦ p}C {f ◦ q} Disj

We now consider cases on (‡), the last rule applied before the frame rule.
If the rule is Cons then, since p ⊆ q implies that {c} ◦ p ⊆ {c} ◦ q, we can

move the application of the frame rule earlier in the proof as follows:

{c} ◦ p ⊆ {c} ◦ p′

...
{p′}C {q′}

{{c} ◦ p′}C {{c} ◦ q′} Frame {c} ◦ q ⊆ {c} ◦ q′

{{c} ◦ p}C {{c} ◦ q} Cons

30 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

The application of the frame rule can then be removed by induction.

If the rule is Disj then, since ◦ is right-distributive over ∨, the proof can be
transformed as follows:

∀i ∈ I

...
{pi}C {qi}

{{c} ◦ pi}C {{c} ◦ qi}
Frame{

{c} ◦
∨
i∈I pi

}
C
{
{c} ◦

∨
i∈I qi

} Disj

The applications of the frame rule can then be removed by induction.

If the rule is Conj then we make use of the left-cancellation property, which
implies that a ∈ {c} ◦

∧
i∈I pi if and only if a ∈

∧
i∈I{c} ◦ pi. We can transform

the proof as follows:

∀i ∈ I

...
{pi}C {qi}

{{c} ◦ pi}C {{c} ◦ qi}
Frame{

{c} ◦
∧
i∈I pi

}
C
{
{c} ◦

∧
i∈I qi

} Conj

The applications of the frame rule can then be removed by induction.

If the rule is Local then it is possible that the frame c includes a program
variable with the same name as one that is scoped by the local block. This
means we cannot in general push the frame into the local block. Note that, for
some cA ∈ DA and cV ∈ Σ, {c} = {(cA, cV)} = (IA × {cV}) • {(cA, ∅)}. Hence we
can transform the proof as follows:

...
{(IA × v ⇀⇁ −) ◦ p} C′ {(IA × v ⇀⇁ −) ◦ q}
{({cA} × v ⇀⇁ −) ◦ p} C′ {({cA} × v ⇀⇁ −) ◦ q} Frame

{{(cA, ∅)} ◦ p} local v in C′ {{(cA, ∅)} ◦ q}
Local

{{c} ◦ p} local v in C′ {{c} ◦ q} Frame

The side-condition for the Local rule, that (IA × v ⇀⇁ −) ◦ {(cA, ∅)} ◦ p 6=
∅, follows from the original side-condition that (IA × v ⇀⇁ −) ◦ p 6= ∅. The
applications of the frame rule are either of the form of (3) or can be removed by
induction.

If the rule is PCall then we again consider the frame context in terms of its
two components, i.e. c = (cA, cV) for some cA ∈ DA and cV ∈ Σ. The PCall rule
used some (f : P → Q) ∈ Γ . By definition, (f : ({cA}◦P)→ ({cA}◦Q)) ∈ F (Γ).

Locality Refinement 31

Hence we can transform the proof as follows:

F (Γ) `

{
({cA} ◦ P (J−→E Kρ[−→y 7→−→v]))× (ρ ∗ −→y ⇀⇁ −→v)

}
call −→y := f(

−→
E)

{∃−→w . ({cA} ◦Q(−→w))× (ρ ∗ −→y ⇀⇁ −→w)}

PCall

F (Γ) `

{
{(cA, cV)} ◦ (P (J−→E Kρ[−→y 7→−→v])× (ρ ∗ −→y ⇀⇁ −→v))

}
call −→y := f(

−→
E)

{{(cA, cV)} ◦ (∃−→w .Q(−→w)× (ρ ∗ −→y ⇀⇁ −→w))}

Frame

The application of the frame rule is of the form of (3) with the frame IA×{cV}.

The cases for the remaining rules, corresponding to program constructs, are
straight-forward.

Consider case when PDef is the last rule applied:

...

∀(fi : P → Q) ∈ Γ. Γ ′, Γ `
{∃−→v . P (−→v)× (−→x ⇀⇁ −→v ∗ −→r ⇀⇁ −)}

Ci
{∃−→w .Q(−→w)× (−→x ⇀⇁ − ∗ −→r ⇀⇁ −→w)}

...
Γ ′, Γ ` {p} C {q}

Γ ′ ` {p} procs −→r := f1(−→x){C1}, . . . ,−→r := fk(−→x){Ck} in C {q} PDef

The proofs of the function bodies can be extended by applying the frame rule
to give:

∀f ∈ P(CA),
(fi : P → Q) ∈ Γ .

...

Γ ′, Γ `
{∃−→v . P (−→v)× (−→x ⇀⇁ −→v ∗ −→r ⇀⇁ −)}

Ci
{∃−→w .Q(−→w)× (−→x ⇀⇁ − ∗ −→r ⇀⇁ −→w)}

Γ ′, Γ `
{∃−→v . (f ◦ P (−→v))× (−→x ⇀⇁ −→v ∗ −→r ⇀⇁ −)}

Ci
{∃−→w . (f ◦Q(−→w))× (−→x ⇀⇁ − ∗ −→r ⇀⇁ −→w)}

Frame

These proofs, and the proof of the remaining premise, can be transformed by
induction so that they only use the frame rule in the required manner and use
the procedure environment F (Γ, Γ ′) = F (Γ), F (Γ ′). These proofs can then be

32 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

recombined to give the required proof transformation:

...

∀(fi : P → Q) ∈ F (Γ). F (Γ ′, Γ) `
{∃−→v . P (−→v)× (−→x ⇀⇁ −→v ∗ −→r ⇀⇁ −)}

Ci
{∃−→w .Q(−→w)× (−→x ⇀⇁ − ∗ −→r ⇀⇁ −→w)}

(?)

(?)

...
F (Γ ′, Γ) ` {p} C {q}

F (Γ ′) ` {p} procs −→r := f1(−→x){C1}, . . . ,−→r := fk(−→x){Ck} in C {q} PDef

ut

Proof (Proposition 2). Suppose that Γ `A {p}C {q}. We first apply Lemma 1 to
translate the proof into a frame-free proof. This can be converted into a proof
of JΓ K `B {JpK} JCK {JqK} by a straightforward inductive argument: each framed
axiom is replaced by the derivation of its translation, and each inference rule is
replaced by its low-level equivalent, since the translation preserves the necessary
properties. ut

This completes the proof of Theorem 4.

D Correctness of the List Implementation

In the following section we show that the selected implementations for commands
of our abstract list module are correct. We do this following the general theory
for locality breaking translations laid out in § 6. We need to show that each pro-
cedure implementation satisfies the high-level specification for that procedure,
in any context. We do this in the presence of a specification environment which
allows for recursive procedure calls.

Let the procedure environment Γ be defined as,

Γ ::= { getNext : (λe1, e2. Jf ◦ i Z⇒v′ + u ∧ (e1 = i) ∧ (e2 = v′)K)
→ (λv. Jf ◦ i Z⇒v′ + u ∧ (v = u)K) ,

getNext : (λe1, e2. Jf ◦ i Z⇒ [l + v′] ∧ (e1 = i) ∧ (e2 = v′)K)
→ (λv. Jf ◦ i Z⇒ [l + v′] ∧ (v = null)K) ,

remove : (λe1, e2. Jf ◦ i Z⇒v ∧ (e1 = i) ∧ (e2 = v)K)
→ (Jf ◦ i Z⇒εK) ,

}

We need to show that the bodies of the implementations for the high-level list
commands satisfy this procedure specification environment.

Locality Refinement 33

Lemma 9 (getNext body correctness). The implementation of getNext
given in §6.1 satisfies the procedure specification environment.

Γ `

{
∃e1, e2. Jf ◦ i Z⇒v′ + u ∧ (e1 = i) ∧ (e2 = v′)K
×i ⇀⇁ e1 ∗ v′ ⇀⇁ e2 ∗ v ⇀⇁ −

}
getNextbody{

∃v. Jf ◦ i Z⇒v′ + u ∧ (v = u)K
×i ⇀⇁ − ∗ v′ ⇀⇁ − ∗ v ⇀⇁ v

}

Γ `

{
∃e1, e2. Jf ◦ i Z⇒ [l + v′] ∧ (e1 = i) ∧ (e2 = v′)K
×i ⇀⇁ e1 ∗ v′ ⇀⇁ e2 ∗ v ⇀⇁ −

}
getNextbody{

∃v. Jf ◦ i Z⇒ [l + v′] ∧ (v = null)K
×i ⇀⇁ − ∗ v′ ⇀⇁ − ∗ v ⇀⇁ v

}

Proof. There are two cases to prove. In the first case the value v′ is not the last
value in list i. We can assume that the context f at least takes the list i to
complete list. If it does not, then the precondition will be equivalent to False
and correctness if trivial. So let the singleton f = i Z⇒ [l1 +−+ l2] ∗ ls for some
lists l1, l2 and a list store ls consisting only of complete lists. Note that v′ 6∈ l1,
since elements within list are unique, so in particular ∀v ∈ l1. v 6= v′. We make
use of this fact when testing for equality with v′.

34 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

{∃e1, e2. Jf ◦ i Z⇒v′ + u ∧ (e1 = i) ∧ (e2 = v′)K× i ⇀⇁ e1 ∗ v′ ⇀⇁ e2 ∗ v ⇀⇁ −}{
∃p, x, y, z. i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z ∗ 〈〈l2〉〉(z,null) ∗ JlsK
× i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ −

}
{
i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ −

}
local x in{

i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z
× i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ − ∗ x ⇀⇁ −

}
x := [i] ;{
i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ − ∗ x ⇀⇁ p

}
 (l1

.= ε) ∗ i 7→ x ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ − ∗ x ⇀⇁ x

 ∨

∃v, a, l′. (l1

.= v + l′) ∗ i 7→ p
∗ p 7→ v,a ∗ 〈〈l′〉〉(a,x) ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ − ∗ x ⇀⇁ p




v := [x .value] ;
 (l1

.= ε) ∗ i 7→ x ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v′ ∗ x ⇀⇁ x

 ∨

∃v, a, l′. (l1

.= v + l′) ∗ i 7→ p
∗ p 7→ v,a ∗ 〈〈l′〉〉(a,x) ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v ∗ x ⇀⇁ p




 i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v′ ∗ x ⇀⇁ x

 ∨

∃l′, a, v, b, l′′. (l1

.= l′ + v + l′′)
∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b
∗ 〈〈l′′〉〉(b,x) ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v ∗ x ⇀⇁ a




while v 6= v ′ do{
∃l′, a, v, b, l′′. (l1

.= l′ + v + l′′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b ∗ 〈〈l′′〉〉(b,x)
∗ x 7→ v′,y ∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v ∗ x ⇀⇁ a

}
x := [x .next] ;{
∃l′, a, v, b, l′′. (l1

.= l′ + v + l′′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b ∗ 〈〈l′′〉〉(b,x)
∗ x 7→ v′,y ∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v ∗ x ⇀⇁ b

}

 i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i
∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v ∗ x ⇀⇁ x

 ∨

∃l′, a, v, b, v′′, c, l′′.
(l1

.= l′ + v + v′′ + l′′) ∗ i 7→ p
∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b ∗ b 7→ v′′,c
∗ 〈〈l′′〉〉(c,x) ∗ x 7→ v′,y ∗ y 7→ u,z
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v ∗ x ⇀⇁ b




v := [x .value]
 i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i
∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v′ ∗ x ⇀⇁ x

 ∨

∃l′, a, v, b, v′′, c, l′′.
(l1

.= l′ + v + v′′ + l′′) ∗ i 7→ p
∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b ∗ b 7→ v′′,c
∗ 〈〈l′′〉〉(c,x) ∗ x 7→ v′,y ∗ y 7→ u,z
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v′′ ∗ x ⇀⇁ b





Locality Refinement 35
 i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v′ ∗ x ⇀⇁ x

 ∨

∃l′, a, v, b, l′′. (l1

.= l′ + v + l′′)
∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b
∗ 〈〈l′′〉〉(b,x) ∗ x 7→ v′,y
∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v ∗ x ⇀⇁ a


{

i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v′ ∗ x ⇀⇁ x
}

x := [x .next] ;{
i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v′ ∗ x ⇀⇁ y

}
if x = null then ... else v := [x .value]{
i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ u ∗ x ⇀⇁ y

}{
i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ u

}{
∃p, x, y, z. i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v′,y ∗ y 7→ u,z ∗ 〈〈l2〉〉(z,null) ∗ JlsK
× i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ u

}
{∃v. Jf ◦ i Z⇒v′ + u ∧ (v = u)K× i ⇀⇁ − ∗ v′ ⇀⇁ − ∗ v ⇀⇁ v}

In the second case the value v′ is the last value in list i. In this case the list
i is already a complete list, so let the singleton f = ls for some list store ls
consisting only of complete lists that do not include i. As before, if ls contains
a list i, or any of the list is incomplete, then the precondition will be equivalent
to False and the proof is trivial. Again note that v′ 6∈ l, since elements within
list are unique, so in particular ∀v ∈ l. v 6= v′. We make use of this fact when

36 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

testing for equality with v′.

{∃e1, e2. Jf ◦ i Z⇒ [l + v′] ∧ (e1 = i) ∧ (e2 = v′)K× i ⇀⇁ e1 ∗ v′ ⇀⇁ e2 ∗ v ⇀⇁ −}{
∃p, x. i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null ∗ JlsK× i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ −

}{
i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ −

}
local x in{

i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ − ∗ x ⇀⇁ −
}

x := [i] ;{
i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ − ∗ x ⇀⇁ p

}


(l .= ε) ∗ i 7→ x
∗ x 7→ v′,null
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ − ∗ x ⇀⇁ x

 ∨

∃v, a, l′. (l .= v + l′) ∗ i 7→ p
∗ p 7→ v,a ∗ 〈〈l′〉〉(a,x)
∗ x 7→ v′,null × i ⇀⇁ i
∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ − ∗ x ⇀⇁ p




v := [x .value] ;


(l .= ε) ∗ i 7→ x
∗ x 7→ v′,null
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v′ ∗ x ⇀⇁ x

 ∨

∃v, a, l′. (l .= v + l′) ∗ i 7→ p
∗ p 7→ v,a ∗ 〈〈l′〉〉(a,x)
∗ x 7→ v′,null × i ⇀⇁ i
∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v ∗ x ⇀⇁ p





i 7→ p ∗ 〈〈l〉〉(p,x)
∗ x 7→ v′,null
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v′ ∗ x ⇀⇁ x

 ∨

∃l′, a, v, b, l′′. (l .= l′ + v + l′′)
∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b
∗ 〈〈l′′〉〉(b,x) ∗ x 7→ v′,null
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v ∗ x ⇀⇁ a




while v 6= v ′ do{
∃l′, a, v, b, l′′. (l .= l′ + v + l′′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b ∗ 〈〈l′′〉〉(b,x)
∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v ∗ x ⇀⇁ a

}
x := [x .next] ;{
∃l′, a, v, b, l′′. (l .= l′ + v + l′′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b ∗ 〈〈l′′〉〉(b,x)
∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v ∗ x ⇀⇁ b

}


i 7→ p ∗ 〈〈l〉〉(p,x)
∗ x 7→ v′,null
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v ∗ x ⇀⇁ x

 ∨

∃l′, a, v, b, v′′, c, l′′.
(l .= l′ + v + v′′ + l′′) ∗ i 7→ p
∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b ∗ b 7→ v′′,c
∗ 〈〈l′′〉〉(c,x) ∗ x 7→ v′,null × i ⇀⇁ i
∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v ∗ x ⇀⇁ b




v := [x .value]

i 7→ p ∗ 〈〈l〉〉(p,x)
∗ x 7→ v′,null
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v′ ∗ x ⇀⇁ x

 ∨

∃l′, a, v, b, v′′, c, l′′.
(l .= l′ + v + v′′ + l′′) ∗ i 7→ p
∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b ∗ b 7→ v′′,c
∗ 〈〈l′′〉〉(c,x) ∗ x 7→ v′,null × i ⇀⇁ i
∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v′′ ∗ x ⇀⇁ b





i 7→ p ∗ 〈〈l〉〉(p,x)
∗ x 7→ v′,null
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v′ ∗ x ⇀⇁ x

 ∨

∃l′, a, v, b, l′′. (l .= l′ + v + l′′)
∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v,b
∗ 〈〈l′′〉〉(b,x) ∗ x 7→ v′,null
× i ⇀⇁ i ∗ v′ ⇀⇁ v′

∗ v ⇀⇁ v ∗ x ⇀⇁ a


{

i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v′ ∗ x ⇀⇁ x
}

x := [x .next] ;{
i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ v′ ∗ x ⇀⇁ null

}
if x = null then v := x else ...{
i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ null ∗ x ⇀⇁ null

}{
i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null × i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ null

}{
∃p, x. i 7→ p ∗ 〈〈l〉〉(p,x) ∗ x 7→ v′,null ∗ JlsK× i ⇀⇁ i ∗ v′ ⇀⇁ v′ ∗ v ⇀⇁ null

}
{∃v. Jf ◦ i Z⇒ [l + v′] ∧ (v = null)K× i ⇀⇁ − ∗ v′ ⇀⇁ − ∗ v ⇀⇁ v}

Locality Refinement 37

ut

Lemma 10 (Remove Body Correctness). The implementation of remove
given in §6.1 satisfies the procedure specification environment.

Γ `

{
∃e1, e2. Jf ◦ i Z⇒v ∧ (e1 = i) ∧ (e2 = v)K× i ⇀⇁ e1 ∗ v ⇀⇁ e2

}
removebody

{Jf ◦ i Z⇒εK× i ⇀⇁ − ∗ v ⇀⇁ −}

Proof. We can assume that the context f at least takes the list i to complete list.
If it does not, then the precondition will be equivalent to False and correctness
if trivial. So let the singleton f = i Z⇒ [l1 +−+ l2] ∗ ls for some lists l1, l2 and
a list store ls consisting only of complete lists. Note that v′ 6∈ l1, since elements
within list are unique, so in particular ∀v ∈ l1. v 6= v′. We make use of this fact

38 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse

when testing for equality with v′.

{∃e1, e2. Jf ◦ i Z⇒v ∧ (e1 = i) ∧ (e2 = v)K× i ⇀⇁ e1 ∗ v ⇀⇁ e2}{
∃p, x, y. i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v,y ∗ 〈〈l2〉〉(y,null) ∗ JlsK× i ⇀⇁ i ∗ v ⇀⇁ v

}{
i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v,y × i ⇀⇁ i ∗ v ⇀⇁ v

}
local u , x , y , z in{

i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ − ∗ x ⇀⇁ − ∗ y ⇀⇁ − ∗ z ⇀⇁ −

}
x := [i] ;{
i 7→ p ∗ 〈〈l1〉〉(p,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ − ∗ x ⇀⇁ p ∗ y ⇀⇁ − ∗ z ⇀⇁ −

}



(l1
.= ε) ∗ i 7→ x ∗ x 7→ v,y

× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ − ∗ x ⇀⇁ x
∗ y ⇀⇁ − ∗ z ⇀⇁ −

 ∨

∃v′, a, l′. (l1

.= v′ + l′) ∗ i 7→ p
∗ p 7→ v′,a ∗ 〈〈l′〉〉(a,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ −
∗ x ⇀⇁ p ∗ y ⇀⇁ − ∗ z ⇀⇁ −




u := [x .value] ;


(l1
.= ε) ∗ i 7→ x ∗ x 7→ v,y

× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ v ∗ x ⇀⇁ x
∗ y ⇀⇁ − ∗ z ⇀⇁ −

 ∨

∃v′, a, l′. (l1

.= v′ + l′) ∗ i 7→ p
∗ p 7→ v′,a ∗ 〈〈l′〉〉(a,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′

∗ x ⇀⇁ p ∗ y ⇀⇁ − ∗ z ⇀⇁ −




y := [x .next] ;


(l1
.= ε) ∗ i 7→ x ∗ x 7→ v,y

× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ v ∗ x ⇀⇁ x
∗ y ⇀⇁ y ∗ z ⇀⇁ −

 ∨

∃v′, a, l′. (l1

.= v′ + l′) ∗ i 7→ p
∗ p 7→ v′,a ∗ 〈〈l′〉〉(a,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′

∗ x ⇀⇁ p ∗ y ⇀⇁ a ∗ z ⇀⇁ −




if u = v then{
(l1

.= ε) ∗ i 7→ x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ x ∗ y ⇀⇁ y ∗ z ⇀⇁ −

}
[i] := y ;{

(l1
.= ε) ∗ i 7→ y ∗ x 7→ v,y

× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ x ∗ y ⇀⇁ y ∗ z ⇀⇁ −

}
disposeNode(x){

(l1
.= ε) ∗ i 7→ y × i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ x ∗ y ⇀⇁ y ∗ z ⇀⇁ −

}{
i 7→ p ∗ 〈〈l1〉〉(p,y) × i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ − ∗ y ⇀⇁ − ∗ z ⇀⇁ −

}

Locality Refinement 39

else{
∃v′, a, l′. (l1

.= v′ + l′) ∗ i 7→ p ∗ p 7→ v′,a ∗ 〈〈l′〉〉a,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′ ∗ x ⇀⇁ p ∗ y ⇀⇁ a ∗ z ⇀⇁ −

}



∃v′. (l1

.= v′) ∗ i 7→ p
∗ p 7→ v′,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ v′ ∗ x ⇀⇁ p
∗ y ⇀⇁ x ∗ z ⇀⇁ −

 ∨

∃v′, a, v′′, b, l′. (l1

.= v′ + v′′ + l′)
∗ i 7→ p ∗ p 7→ v′,a ∗ a 7→ v′′,b
∗ 〈〈l′〉〉(b,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′

∗ x ⇀⇁ p ∗ y ⇀⇁ a ∗ z ⇀⇁ −




u := [y .value] ;


∃v′. (l1

.= v′) ∗ i 7→ p
∗ p 7→ v′,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ v ∗ x ⇀⇁ p
∗ y ⇀⇁ x ∗ z ⇀⇁ −

 ∨

∃v′, a, v′′, b, l′. (l1

.= v′ + v′′ + l′)
∗ i 7→ p ∗ p 7→ v′,a ∗ a 7→ v′′,b
∗ 〈〈l′〉〉(b,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′′

∗ x ⇀⇁ p ∗ y ⇀⇁ a ∗ z ⇀⇁ −





∃l′, a, v′. (l1

.= l′ + v′)
∗ i 7→ p ∗ 〈〈l′〉〉(p,a)
∗ a 7→ v′,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ v ∗ x ⇀⇁ a
∗ y ⇀⇁ x ∗ z ⇀⇁ −

 ∨

∃l′, a, v′, b, v′′, c, l′′.
(l1

.= l′ + v′ + v′′ + l′′) ∗ i 7→ p
∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,b ∗ b 7→ v′′,c
∗ 〈〈l′′〉〉(c,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′′

∗ x ⇀⇁ a ∗ y ⇀⇁ b ∗ z ⇀⇁ −




while u 6= v do∃l

′, a, v′, b, v′′, c, l′′. (l1
.= l′ + v′ + v′′ + l′′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a)

∗ a 7→ v′,b ∗ b 7→ v′′,c ∗ 〈〈l′′〉〉(c,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′′ ∗ x ⇀⇁ a ∗ y ⇀⇁ b ∗ z ⇀⇁ −


x := y ;∃l

′, a, v′, b, v′′, c, l′′. (l1
.= l′ + v′ + v′′ + l′′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a)

∗ a 7→ v′,b ∗ b 7→ v′′,c ∗ 〈〈l′′〉〉c,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′′ ∗ x ⇀⇁ b ∗ y ⇀⇁ b ∗ z ⇀⇁ −


y := [x .next] ;∃l

′, a, v′, b, v′′, c, l′′. (l1
.= l′ + v′ + v′′ + l′′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a)

∗ a 7→ v′,b ∗ b 7→ v′′,c ∗ 〈〈l′′〉〉(c,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′′ ∗ x ⇀⇁ b ∗ y ⇀⇁ c ∗ z ⇀⇁ −





∃l′, a, v′, b, v′′.
(l1

.= l′ + v′ + v′′) ∗ i 7→ p
∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,b
∗ b 7→ v′′,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ v′′ ∗ x ⇀⇁ b
∗ y ⇀⇁ x ∗ z ⇀⇁ −


∨



∃l′, a, v′, b, v′′, c, v′′′, d, l′′.
(l1

.= l′ + v′ + v′′ + v′′′ + l′′)
∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,b
∗ b 7→ v′′,c ∗ c 7→ v′′′,d
∗ 〈〈l′′〉〉(d,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′′

∗ x ⇀⇁ b ∗ y ⇀⇁ c ∗ z ⇀⇁ −




u := [y .value]



∃l′, a, v′, b, v′′.
(l1

.= l′ + v′ + v′′) ∗ i 7→ p
∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,b
∗ b 7→ v′′,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ v ∗ x ⇀⇁ b
∗ y ⇀⇁ x ∗ z ⇀⇁ −


∨



∃l′, a, v′, b, v′′, c, v′′′, d, l′′.
(l1

.= l′ + v′ + v′′ + v′′′ + l′′)
∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,b
∗ b 7→ v′′,c ∗ c 7→ v′′′,d
∗ 〈〈l′′〉〉(d,x) ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′′′

∗ x ⇀⇁ b ∗ y ⇀⇁ c ∗ z ⇀⇁ −





40 Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheelhouse


∃l′, a, v′. (l1

.= l′ + v′)
∗ i 7→ p ∗ 〈〈l′〉〉(p,a)
∗ a 7→ v′,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v
∗ u ⇀⇁ v ∗ x ⇀⇁ a
∗ y ⇀⇁ x ∗ z ⇀⇁ −

 ∨

∃l′, a, v′, b, v′′, c, l′′.
(l1

.= l′ + v′ + v′′ + l′′) ∗ i 7→ p
∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,b ∗ b 7→ v′′,c
∗ 〈〈l′′〉〉c,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v′′

∗ x ⇀⇁ a ∗ y ⇀⇁ b ∗ z ⇀⇁ −



{
∃l′, a, v′. (l1

.= l′ + v′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ a ∗ y ⇀⇁ x ∗ z ⇀⇁ −

}
z := [y .next] ;{
∃l′, a, v′. (l1

.= l′ + v′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,x ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ a ∗ y ⇀⇁ x ∗ z ⇀⇁ y

}
[x .next] := z ;{
∃l′, a, v′. (l1

.= l′ + v′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,y ∗ x 7→ v,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ a ∗ y ⇀⇁ x ∗ z ⇀⇁ y

}
disposeNode(y){
∃l′, a, v′. (l1

.= l′ + v′) ∗ i 7→ p ∗ 〈〈l′〉〉(p,a) ∗ a 7→ v′,y
× i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ a ∗ y ⇀⇁ x ∗ z ⇀⇁ y

}
{
i 7→ p ∗ 〈〈l1〉〉(p,y) × i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ − ∗ y ⇀⇁ − ∗ z ⇀⇁ −

}{
i 7→ p ∗ 〈〈l1〉〉(p,y) × i ⇀⇁ i ∗ v ⇀⇁ v ∗ u ⇀⇁ v ∗ x ⇀⇁ − ∗ y ⇀⇁ − ∗ z ⇀⇁ −

}{
i 7→ p ∗ 〈〈l1〉〉(p,y) × i ⇀⇁ i ∗ v ⇀⇁ v

}{
∃p, x, y. i 7→ p ∗ 〈〈l1〉〉(p,y) ∗ 〈〈l2〉〉(y,null) ∗ JlsK× i ⇀⇁ i ∗ v ⇀⇁ v

}
{Jf ◦ i Z⇒εK× i ⇀⇁ − ∗ v ⇀⇁ −}

ut

Finally, we observe that for all (p,−→r := f(
−→
E), q) ∈ AxT

Γ ` {JpK} call −→r := f(
−→
E) {JqK}

This follows directly from the PCall rule and the definition of Γ .

