83 research outputs found

    Dopaminergic modulation of affective and social deficits induced by prenatal glucocorticoid exposure

    Get PDF
    Prenatal stress or exposure to elevated levels of glucocorticoids (GCs) can impair specific neurobehavioral circuits leading to alterations in emotional processes later in life. In turn, emotional deficits may interfere with the quality and degree of social interaction. Here, by using a comprehensive behavioral approach in combination with the measurement of ultrasonic vocalizations, we show that in utero GC (iuGC)-exposed animals present increased immobility in the forced swimming test, pronounced anhedonic behavior (both anticipatory and consummatory), and an impairment in social interaction at different life stages. Importantly, we also found that social behavioral expression is highly dependent on the affective status of the partner. A profound reduction in mesolimbic dopaminergic transmission was found in iuGC animals, suggesting a key role for dopamine (DA) in the etiology of the observed behavioral deficits. Confirming this idea, we present evidence that a simple pharmacological approach—acute L-3,4-dihydroxyphenylacetic acid (L-DOPA) oral administration, is able to normalize DA levels in iuGC animals, with a concomitant amelioration of several dimensions of the emotional and social behaviors. Interestingly, L-DOPA effects in control individuals were not so straightforward; suggesting that both hypo- and hyperdopaminergia are detrimental in the context of such complex behaviors.This work was supported by a grant of Institute for the Study of Affective Neuroscience (ISAN) and Janssen Neurosciences Prize. SB and AJR have Fundacao para a Ciencia e Tecnologia (FCT) fellowships (SFRH/BD/89936/2012; SFRH/BPD/33611/2009)

    The Effects of Breeding Protocol in C57BL/6J Mice on Adult Offspring Behaviour

    Get PDF
    Animal experiments have demonstrated that a wide range of prenatal exposures can impact on the behaviour of the offspring. However, there is a lack of evidence as to whether the duration of sire exposure could affect such outcomes. We compared two widely used methods for breeding offspring for behavioural studies. The first involved housing male and female C57Bl/6J mice together for a period of time (usually 10–12 days) and checking for pregnancy by the presence of a distended abdomen (Pair-housed; PH). The second involved daily introduction of female breeders to the male homecage followed by daily checks for pregnancy by the presence of vaginal plugs (Time-mated; TM). Male and female offspring were tested at 10 weeks of age on a behavioural test battery including the elevated plus-maze, hole board, light/dark emergence, forced swim test, novelty-suppressed feeding, active avoidance and extinction, tests for nociception and for prepulse inhibition (PPI) of the acoustic startle response. We found that length of sire exposure (LSE) had no significant effects on offspring behaviour, suggesting that the two breeding protocols do not differentially affect the behavioural outcomes of interest. The absence of LSE effects on the selected variables examined does not detract from the relevance of this study. Information regarding the potential influences of breeding protocol is not only absent from the literature, but also likely to be of particular interest to researchers studying the influence of prenatal manipulations on adult behaviour

    Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence

    Get PDF
    Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity

    Genotypic and environmental effects on the level of ascorbic acid, phenolic compounds and related gene expression during pineapple fruit development and ripening

    No full text
    Pineapple (Ananas comosus (L.) Merr.) is a non-climacteric tropical fruit whose ripening could be accompanied by oxidative processes and the concurrent activation of enzymatic and non-enzymatic reactive oxygen species (ROS) scavenging systems. To better understand the variability of these processes among climatic environments or genotypes in pineapple, the temporal expression dynamics for genes encoding oxidative and antioxidative stress enzymes were analyzed by real-time RT-PCR during fruit development and ripening, among three cultivars: Queen Victoria, Flhoran 41 and MD-2 hybrid, and in two climatic areas. Pineapple development and ripening involved changes in the levels of transcripts encoding for polyphenol oxidase and transcripts involved in the first steps of the phenylpropanoid pathway and in the balance of ROS, especially those encoding for ascorbate peroxydase and metallothioneins, regardless of the cultivar. Our results confirm the same dynamic in gene expression from the two environmental crop areas, however climatic conditions influenced the level of the expression of the major transcripts studied that were linked to these oxidative and antioxidant metabolisms. MT3a and MT3b transcripts were not influenced by genetic factor. The genetic effect was not significant on the various transcripts linked to the first steps of the phenylpropanoid pathway and to phenol oxidation, except 4CL ones. In ripe pineapple, highly significant relationships were found between the contents in antioxidant metabolites, i.e., ascorbic acid and total phenolic compounds, and the transcript levels of genes involved in the enzymatic ROS-scavenging system and in the biosynthesis or regeneration of ROS-scavenging compounds, like phenylpropanoids, ascorbic acid, metallothioneins

    Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine.

    No full text
    Prenatally-stressed (PS) rats are characterized by a general impairment of the hypothalamo-pituitary-adrenal (HPA) axis and sleep disturbances indicating that this model has face validity with some clinical features observed in a subpopulation of depressed patients. The prolonged corticosterone secretion shown by PS rats in response to stress was positively correlated with an increased immobility behavior in the forced swim test. To investigate the predictive validity of this model, a separate group of animals was chronically treated with the antidepressant tianeptine (10 mg/kg i.p. for 21 days). Such chronic treatment reduced in PS rats immobility time in the forced swim test. These findings suggest that the PS rat is an interesting animal model for the evaluation of antidepressant treatment. (C) 2003 Elsevier B.V. All rights reserved

    Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender.

    No full text
    Prenatal stress impairs activity of the hypothalamo-pituitary-adrenal (HPA) axis in response to stress in adult offspring. So far, very few data are available on the effects of prenatal stress on circadian functioning of the HPA axis. Here, we studied the effects of prenatal stress on the circadian rhythm of corticosterone secretion in male and female adult rats. To evaluate the effects of prenatal stress on various regulatory components of corticosterone secretion, we also assessed the diurnal fluctuation of adrenocorticotropin, total and free corticosterone levels, and hippocampal corticosteroid receptors. Finally, in the search of possible maternal factors, we studied the effects of repeated restraint stress on the pattern of corticosterone secretion in pregnant female rats. Results demonstrate that prenatal stress induced higher levels of total and free corticosterone secretion at the end of the light period in both males and females, and hypercorticism over the entire diurnal cycle in females. No diurnal fluctuation of adrenocorticotropin was observed in any group studied. The effects of prenatal stress on corticosterone secretion could be mediated, at least in part, by a reduction in corticosteroid receptors at specific times of day. Results also show that prepartal stress alters the pattern of corticosterone secretion in pregnant females. Those data indicate that prenatally stressed rats exhibit an altered temporal functioning of the HPA axis, which, taken together with their abnormal response to stress, reinforces the idea of a general homeostatic dysfunction in those animals.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine.

    No full text
    Prenatally-stressed (PS) rats are characterized by a general impairment of the hypothalamo-pituitary-adrenal (HPA) axis and sleep disturbances indicating that this model has face validity with some clinical features observed in a subpopulation of depressed patients. The prolonged corticosterone secretion shown by PS rats in response to stress was positively correlated with an increased immobility behavior in the forced swim test. To investigate the predictive validity of this model, a separate group of animals was chronically treated with the antidepressant tianeptine (10 mg/kg i.p. for 21 days). Such chronic treatment reduced in PS rats immobility time in the forced swim test. These findings suggest that the PS rat is an interesting animal model for the evaluation of antidepressant treatment.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore