13,715 research outputs found

    A constitutive model for an overlay coating

    Get PDF
    Coatings are frequently applied to gas turbine blades and vanes to provide protection against oxidation and corrosion. The results of an experimental and analytical study to develop a constitutive model for an overlay coating is presented. Specimens were machined from a hot isostatically pressed billet of PWA 286. The tests consisted of isothermal stress relaxation cycles with monotonically increasing maximum strain and were conducted at various temperatures. The results were used to calculate the constants for various constitutive models, including the classical, the Walker isotropic, a simplified Walker, and Stowell models. A computerized regression analysis was used to calculate model constants from the data. The best fit was obtained for the Walker model, with the simplified Walker and classical models close behind

    Circular 78

    Get PDF
    Historically, sales of exotic meats have been limited only by supply. As supply has increased in recent years, national and international exotic game markets have grown rapidly. In the United States, growth has occurred primarily in the restaurant section, although over-the-counter sales have also increased. The Alaskan reindeer industry is exploring the potential of expanding its meat sales as well as antler sales. Meat production increased from 320,000 pounds in 1987 to 432,000 pounds in 1988. This production increase is reflected in a 27 percent increase in dollar value (Alaska Crop and Livestock Reporting Service, 1989). Under current management procedures, potential meat production has been estimated at 500,000 pounds (Pearson and Lewis, 1988). Any future market expansion is likely to occur in urban Alaska and in areas outside the state (Jones, 1988)

    Notched fatigue of single crystal PWA 1480 at turbine attachment temperatures

    Get PDF
    The focus is on the lower temperature, uncoated and notched features of gas turbine blades. Constitutive and fatigue life prediction models applicable to these regions are being developed. Fatigue results are presented which were obtained thus far. Fatigue tests are being conducted on PWA 1480 single crystal material using smooth strain controlled specimens and three different notched specimens. Isothermal fatigue tests were conducted at 1200, 1400, and 1600 F. The bulk of the tests were conducted at 1200 F. The strain controlled tests were conducted at 0.4 percent per second strain rate and the notched tests were cycled at 1.0 cycle per second. A clear orientation dependence is observed in the smooth strain controlled fatigue results. The fatigue lifes of the thin, mild notched specimens agree fairly well with this smooth data when elastic stress range is used as a correlating parameter. Finite element analyses were used to calculate notch stresses. Fatigue testing will continue to further explore the trends observed thus far. Constitutive and life prediction models are being developed

    Life prediction and constitutive models for engine hot section

    Get PDF
    The purpose of this program is to develop life prediction models for coated anisotropic materials used in gas turbine airfoils. In the program, two single crystal alloys and two coatings are being tested. These include PWA 1480, Alloy 185, overlay coating (PWA 286), and aluminide coating (PWA 273). Constitutive models are also being developed for these materials to predict the time independent (plastic) and time dependent (creep) strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularly important for high temperature gas turbine applications and is basic to any life prediction system. Some of the accomplishments of the program are highlighted

    A linearized kinetic theory of spin-1/2 particles in magnetized plasmas

    Full text link
    We have considered linear kinetic theory including the electron spin properties in a magnetized plasma. The starting point is a mean field Vlasov-like equation, derived from a fully quantum mechanical treatment, where effects from the electron spin precession and the magnetic dipole force is taken into account. The general conductivity tensor is derived, including both the free current contribution, as well as the magnetization current associated with the spin contribution. We conclude the paper with an extensive discussion of the quantum-mechanical boundary where we list parameter conditions that must be satisfied for various quantum effects to be influential.Comment: 11 page

    Assessment of Alaska reindeer populations and range conditions

    Get PDF
    Populations of reindeer (Rangifer tarandus) have fluctated greatly since their introduction to Alaska in 1891. In the 1930s, reported numbers exceeded 600 000. Presently, 38 000 reindeer graze 6.2 million ha of rangeland and woodland in Western Alaska (from 66°54'N to 52°07'N latitude). Condition of winter range producing fruticose lichens (Cladina rangiferina, Cladina arbuscula, Cladina stellaris, Cetraria cucullata, Cetraria islandica) is of major concern. Monitoring programs have been established for vegetation, fire, reindeer and wildlife. Reindeer have overgrazed lichen resources on some Bering Sea Islands. Wildfires have had the greatest impact on lichen range depletion on the mainland. Overgrazing has been a problem in localized areas. Moose (Alces alces) and muskox (Ovibos moschatus) rarely contribute to major lichen depletion. 60-80% of the mainland and 5-30% of most island winter lichen ranges are presently estimated to be in good to excellent ecological condition. Procedures for assessing condition of the lichen ranges are being further refined

    Supersymmetry, homology with twisted coefficients and n-dimensional knots

    Full text link
    Let nn be any natural number. Let KK be any nn-dimensional knot in Sn+2S^{n+2}. We define a supersymmetric quantum system for KK with the following properties. We firstly construct a set of functional spaces (spaces of fermionic \{resp. bosonic\} states) and a set of operators (supersymmetric infinitesimal transformations) in an explicit way. Thus we obtain a set of the Witten indexes for KK. Our Witten indexes are topological invariants for nn-dimensional knots. Our Witten indexes are not zero in general. If KK is equivalent to the trivial knot, all of our Witten indexes are zero. Our Witten indexes restrict the Alexander polynomials of nn-knots. If one of our Witten indexes for an nn-knot KK is nonzero, then one of the Alexander polynomials of KK is nontrivial. Our Witten indexes are connected with homology with twisted coefficients. Roughly speaking, our Witten indexes have path integral representation by using a usual manner of supersymmetric theory.Comment: 10pages, no figure

    Quantum Dissipation and Decoherence via Interaction with Low-Dimensional Chaos: a Feynman-Vernon Approach

    Get PDF
    We study the effects of dissipation and decoherence induced on a harmonic oscillator by the coupling to a chaotic system with two degrees of freedom. Using the Feynman-Vernon approach and treating the chaotic system semiclassically we show that the effects of the low dimensional chaotic environment are in many ways similar to those produced by thermal baths. The classical correlation and response functions play important roles in both classical and quantum formulations. Our results are qualitatively similar to the high temperature regime of the Caldeira-Leggett model.Comment: 31 pages, 4 figure

    Calculations of the Supersonic Wave Drag of Nonlifting Wings with Arbitrary Sweepback and Aspect Ratio: Wings Swept Behind the Mach Lines

    Get PDF
    On the basis of a recently developed theory for finite sweptback wings at supersonic speeds, calculations of the supersonic wave drag at zero lift were made for a series of wings having thin symmetrical biconvex sections with untapered plan forms and various angles of sweepback and aspect ratios. The results are presented in a unified form so that a single chart permits the direct determination of the wave drag for this family of airfoils for an extensive range of aspect ratio and sweepback angle for stream Mach numbers up to a value corresponding to that at which the Mach line coincides with the wing leading edge. The calculations showed that in general the wave-drag coefficient decreased with increasing sweepback. At Mach numbers for which the Mach lines are appreciably ahead of the wing leading edge, the 'wave-drag coefficient decreased to an important extent with increases in aspect ratio or slenderness ratio. At Mach numbers for which the Mach lines approach the wing leading edge (Mach numbers approaching a value equal to the secant of the angle of sweepback), the wave-drag coefficient decreased with reductions in aspect ratio or slenderness ratio. In order to check the results obtained by the theory, a comparison was made with the results of tests at the Langley Memorial Aeronautical Laboratory of sweptback wing attached to a freely falling body. The variation of the drag with Mach number and aspect ratio as given by the theory appeared to be in reasonabl
    corecore