RESEARCH MEMORANDUM

CALCULATIONS OF THE SUPERSONIC WAVE DRAG OF NONLIFTING WINGS WITH ARBITRARY SWEEPBACK AND ASPECT RATIO

WINGS SWEPT BEHIND THE MACH IINES

By

Sidney M. Harmon and Margaret D. Swanson
Langley Memorial Aeronautical Laboratory Langley Field, Va.

NATIONAL ADVISORY COMMITTEE

 FOR AERONAUTICSWASHINGTON
February 21, 1947

RESEARCH MEMORANDUM

CALCULATIONS OF THE SUPERSONIC WAVE DRAG OF NONLIFTIIVG WINGS
WITH ARBIITRARY SWEEPBACK AND ASFPECI RATIO

WINGS SWEPT BEHIVD THE MACH LINTES
By Sidney M. Harmon and Margaret D. Swenson

SUMMARY

On the basis of a recently developed theory for finite sweptback wings at supersonic speeds, calculations of the supersonic wave drag at zero lift were made for a ceries of wings having thin symmetrical biconvex sections with untapered plan forms and various angles of sweepback and aspect ratios. The results are presented in a unified form so that a single chart permits the direct determination of the wave drag for this family of airioils for an extensive range of aspect ratio and sweepback angle for stream Mach numbers up to a value corresponding to that at which the Mach line coincides with the wing leading edge.

The calculations showed that in general the wave-drag coefficient decreased with increasing sweepback. At Mach numbers for which the Mach lines are appreciably ahead of the wing leading edge, the wave-drag coefficient decreased to an important extent with increases in aspect ratio or slenderness ratio. At Mach numbers for which the Mach lines approach the wing leading edge (Mach numbers approaching a value oqual to the secant of the angle of sweepback), the wave-drag coefficient decreased with reductions in aspect ratio or slenderness ratio. In order to check the results obtained by the theory, a comparison was made with the results of tests at the Langley Memorial Aeronautical Laboratory of sweptback wing attached to a froely falling body. The variation of the drag with Mach number and aspect ratio as given by the theory appeared to be in reasonable agreement with experiments for the range of Mach number tested.
aspect ratio on the drag. In reference 1, a theory was developed for calculating the pressure distribution at supersonic speods and zero lift for swept-back wings of arbitrary linear taper and aspect ratio having thin symmetrical airfoil sections of sharp leading edges.

In the present paper, the method of reference I is applied to calculate the supersonic wave drag for a sories of wings having thin symmetrical biconver sections at zero lift with untapered plan forms and various angles of swoepbeck and aspect ratios. The term "biconvex profile" as used hersin refers to an airfoil section composed of two parabolic arcs. In each case, the wing is conaidered to be cut off in a direction parallel to the direction of flight. In the calculations the Mach number is varied from 1.0 to a value correspondine to that at which the Mach line coincides with the ving leading edge. The results of the calculations are presented in a unified form which permits the direct determination from a single chart of the wave drag for this family of wings for an extensive range of sweepback angle and aspect ratio for Mach numbers from 1.0 to tho value corresponding to that at which the Mach line coincides with the Ang leading edge, or oqual to the secant of the angle of swoopback. Although the calculations have been made for the biconvex profile, the data may be applied to indicato corresponding results for profilos approximately similar to the biconvex.

In order to illustrate the possible applicejility of the theory to a typical swept-back wing, the calculated drag of a wing of 45° sweopback at zero lift is compared with the results of tests mado at supersonic speods at the Langloy Memoial Aeronautical Laboratory on swept-back wings attached to a freely falling body.

SYMBOLS

x, y, z	coordinates of mutually perpencicular system of axis in wing
$d z / d x$	slope of airfoil surface
c	chord of airfoil section, measured in flight diroction
t / c	thickness ratio of section, measured in flicht airection
A	angle of sweop, degrees
$m=\cot \Lambda$	

h wing semispan measured along y-axis, semichords except in appendix A

K parameter indicating spanwise position equal to y / m, semichords

A aspect ratio
$2 / t$ slenderness ratio, ratio of winc semispan measured along leading edge to maximum thickness of center section
p disturbance pressure
$p / q \quad$ pressure coefficient, ratio of disturbance pressure to dynamic pressure in free stream
V velocity in flight direction
u. x-component of disturbance velocity, positive in flight direction
$\bar{u} u$ caused by source line with reversal in sign of m
w. z-component of disturbance velocity
ϕ disturbance-velocity potential
I source factor required to maintain a riten wedge angle
M Mach number
$\beta=\sqrt{M^{2}-1}$
Yo. cooranato meanued along y-axis which is shifted to tip
$y_{b} \quad$ coordinate measured along y-axis which is shifted to opposite tip section, semichords
d wave drag at section
$c_{d_{\infty}}$ wave-drag coefficient at gection without tip effect
$c_{\bar{d}}$ wave-drag coefficient at section including tip effect
$\Delta c_{\mathrm{d}} \quad$ increment in section wave-drag coefficient caused by wing tips
$\Delta c_{\text {I }} \quad$ increment in section wave-drag coefficient cansed by wing
tip located on same half of wing as section
${ }^{c_{d}}{ }_{\text {II }}$ increment in wave-drag coefficient at section on one wing panel caused by tip of opposite wing panel
C^{C}
wave-drag coefficient for wing without tip effect
C_{D} wave-dreg coefficient for ving including tip effect
$\Delta C_{D} \quad$ increment in wave-drag coefficient caused by tips, complete wing
$\Delta C_{D_{T}} \quad$ increment in wave-drag coefijcient on one ving panel caused jy adjacent wing tip, complete wins
$\Delta C_{D_{T I}}$ increment in wave-drac coefficient on one wing panel caused by tip of opposite wins panel, complete wing
${ }^{C_{D}} \quad$ drag coefficient obtained as sum of coefficients for wave drag and friction drag

૬̆. $\eta \quad$ auxiliary variables which replace x and y, respectively, used to indicate origin of source line

Primed values of A, y, y_{a}, $y_{b}, h, m, d z / a x$, and z indicate transiormation involving multiplication by factor β

Subscripts:
1, 2 rings related accordine to transformetion wich makes y β and me equal respectively for tw wings.

Subscript notations for u and \bar{u} indicate the origin ois source line in terns of coordinates x and y, respectively

AIVAJYSIS

Basic data.- The present analysis is basod on thin-airfoil theory for small pressure disturbances and a constant velocity of sound throughout the fluid. The axes used are the mutually perpondicular x, y, z system in which the x-axis is taken in tho direction of flight positive to the rear, the y-axis is along the
span positive to the right, and the z-axis is positive upwards. Figure 1 shows the symbols used to designate the wing-plan-form parameters. The present analysis is made for untapered wings of biconvex profile at zero lift and is limited to a Mach number range from J. 0 to the value corresponding to that at which the Mach line coincides with the wing leading edge, that is, to a value equal to the secant of the angle of sweepbeck.

Theory.- If p is the disturbance pressure computed for one surface of the airfoil section, the wave drae for the section is

$$
\begin{equation*}
d=2 \int_{0}^{c} p \frac{d z}{d x} d x \tag{I}
\end{equation*}
$$

and the section wave-drag coefficient

$$
c_{d}=\frac{2}{c} \int_{0}^{c} \frac{p}{q} \frac{d z}{d x} d x
$$

where $d z / d x$ is the slope of the surface of the airfoil at the point x. For the symmetrical biconvex profiles (composed of parabolic arcs)

$$
\frac{d z}{d x} \approx \frac{4 \frac{t}{c}}{c}\left(\frac{c}{2}-x\right)
$$

where the thickness ratio t / c may be considered the sole shape parameter. From thin-airfoil theory,

$$
\frac{p}{q}=-\frac{2}{v} \frac{\partial \phi}{\partial x}=2^{\frac{u}{v}}
$$

where u is the disturbance-velocity component in the x-direction, taken positive in the flight direction. For a civen swept-back wing with $\Lambda=\cot ^{-1} m$, the drag coefficient in equation (a) at the spanrise station y may now be writton as

$$
\begin{equation*}
c_{d}(y)=\frac{1 \sigma_{c}^{\frac{t}{c}}}{c^{2}} \int_{y / m}^{\frac{y}{m}+c} u\left(\frac{c}{2}-x+\frac{y}{m}\right) d x \tag{3}
\end{equation*}
$$

The desired intecrand u in equation (3) may be determined by the procedure given in reference 1 . On the basis of the linearized theory, reference 1 derives a solution representing an oblique (swept-back) source line making the angle of sweepback Λ with the y-aris. This solution utilized for the pressure field or for the disturbance velocity is the real part of

$$
\begin{equation*}
u_{0,0}=I \cosh ^{-1} \frac{x-m \beta^{2} y}{\beta|y \cdots m x|} \tag{4}
\end{equation*}
$$

where the subscript notation indicates that the source line atartis at the orisin of coordinates ($x=0, y=0$). Equation (4) is show in reference 1 to satisfy the boundary condition for a thin oblique wedge making the half-angle $\left(\frac{d z}{d x}\right)^{\prime}$ in tine transformed coordinate system of reference $1\left(y^{\prime}=y \beta, z^{\prime}=z \beta\right.$) where $\left(\frac{\partial z}{\partial x}\right)^{\prime}=\frac{W^{\prime}}{V}=\frac{\pi}{V} \frac{\sqrt{I-m^{2}}}{m^{\prime}} I$. In order to obtain an equal wedge angle in the physical coordinate system, the following relations between the transformed coordinates of reference 1 and the physical coordinatos are used

$$
\begin{aligned}
m^{\prime} & =m \beta \\
\mathrm{w}^{\prime} & =\frac{\partial \phi}{\partial z^{\prime}} \\
\mathrm{w} & =\frac{\partial \phi}{\partial z}
\end{aligned}
$$

where $w^{\text {t }}$ and w refer, respectively, to the vertical velocities in the transformed and physical coordinate systoms. Thus

$$
w=\frac{\partial \phi^{\prime}}{\partial z^{\prime}} \frac{\partial z^{\prime}}{\partial z}=w^{\prime} \beta
$$

The half-angle of the wedge is then determined as

$$
\frac{d z}{d x}=\frac{W}{V}=\frac{\pi}{V} \frac{\sqrt{1-m^{2} \beta^{2}}}{m} I
$$

or the required source factor in order to maintain the desired wedge angle is

$$
\begin{equation*}
I=\frac{V}{\pi} \frac{m}{\sqrt{I-m^{2} \beta^{2}}} \frac{d z}{d x} \tag{5}
\end{equation*}
$$

By superposition of solutions of the wedce type, swept-back wings of desired profile shape and plan form can be built up (reference 1). In order to satisfy the boundary conditions over the surface of a biconvex wing, semi-infinite source lines of equal strength are placed along the leading and trailing odges boginning at the center section, in conjunction with a constant distribution of sink lines along the chord. At the tip, where the wing is cut off, reversed semi-infinite source and sink lines are distributed so as to cancel exactly the effect of those originating at the center. section in the entire region of space outboard. of the tip. In the present analysis, the tip is assumed to be cut off in the direction of flight. The term "tip effect" refers to the effect of this wing cut-off. The form of the integrand u for equation (3) is given in appendix A.

In calculating the wave drag over the wing, the disturbances due to the elementary sources and sinks are evidently limited to the regions enclosed by their Mach cones. Figure 2 shows the typical Mach lines originating from the source lines at the leading and trailing edges of the center and tip sections over a wing of

45° sweopback. Figure 2 (a) shows the Mach lines for the infinitely long wing, and ficure $\mathcal{C}(\mathrm{b})$ includes the Mach lines starting from the tip section. In each case the disturbance over the wing caused by the leading and trailing-edge source lines is limited to the region of the wing behind the corresponding Mach line. The regions affected by each of the Mach lines are indicated in figure 'c(b) as regions I to IV. Region I represents the part of the wing affected by the sink line starting from the leading edge of the adjacent tip; region II represents the wing area affected by the sink line startine from the opposite tip. Region III is influenced by the source line starting at the leading edge of the center section and includes the entire wing; region IV is influenced by the source line starting at the trailing edge of the center section.

The resultant velocity u at a point on the wing is made of the component velocitios caused by each of these source and sink lines where the influonce of each component is restricted to the region behind its Mach line. The drag coefficiont $c_{d_{c s}}$ is there-
fore obtained by ovaluating in equation (3) the integrand $u_{0,0}$ over the entire section (rogion III), the integrand $u_{c, 0}$ over part of the section includod in region IV, and the integrands for the u-components causod by the sink distributions along the profile (fig. $2(b)$ and appendix A, equation ($A \subset$)). The drag coofficients $\Delta c_{a_{I}}$ and $\Delta c_{d_{I I}}$ are obtained similarly by integrating along the section in the rogions I and $I I$, respoctively, in addition to the integrations for the u-components caused by the source distributions along the profile (appendix A). The limite of inteerations for x along tho chord and for y along the span, which represent the boundaries for the regions of influence for tho individual u-functions required for a biconvex profile, aro given in the table in appendix A.

Formulas for soction wave-drag coefficients.- The formulas for the soction drag coofficients obtained by intogration of the u-functions and by use of equation (3) are presented in appendix B. These formulas give exprossions for the drag coofficient without the tip effect $c_{d_{c}}$ and also the expressions for the increments in c_{d} caused by the tip offect Δc_{d}.

Wave-drag coefficients for complote wing.- In the present investigation the section drae coefficients expressed by the equations in appendix B wore integrated graphically to obtain the rosults for tho wing-drag coofficients. Subsequently, however,
analytical expressions for the integrations were obtained. These formulas for the wing drag coefficients are presented in appendix B.

Drag coerficient of swept-back wing at Mach number of 1.0.The solution of the equations for c_{d} given in appendix B shows that, for a symmetrical untapered finite swept-back wing at Mach number of 1.0 and zero lift, positive and negative infinite values for c_{d} are obtained at various sections of the ving. The inteEration over the wing of the limiting values for these infinite terms, however, gives zoro. Although some sections of the wing have infinitely positive or negative drag, the total drag coefficient over the wing results in a finite value. The prediction of infinite values of drag at certain sections of the wing clearly violates at these sections the assumption of small disturbances from which the linearized theory is derived. The calculated values for the total drag coefficient at Mach number 1.0 are therefore questionable. The formulas for the total drag at Mach number 1.0 are prosented in appendix B.

Conversion of drag solution to series of related wings.- An examination of equations (B.1), (B3), and (B5) indicates that the drag solution obtained for one value of m and M may be applied directly to obtain the drag for a whole series of wings in which each wing is at a cortain appropriate Mach number. (Equation (BI) is formed by adding expression (Blb) to the right-hand side of equation (Bla).) For example, equation (Bl) may be expressed in the following form:

$$
\begin{equation*}
c_{d_{\infty}}(y)=\frac{8}{\pi}\left(\frac{t}{c}\right)^{2} \frac{m \beta}{\beta} F\left(\frac{y \beta}{m \beta}, m \beta\right) \tag{6}
\end{equation*}
$$

where $F\left(\frac{y \beta}{m \beta}, m \beta\right)$ refers to the variable terms and where $m \beta=m^{\prime}$, and $\frac{\mathrm{y}}{\mathrm{m}}=\mathrm{K}$. If the subscript I refers to a wing at Mach number corresponding to β_{1} and the subscript 2 to any other wing at the Mach number corrosponding to β_{c}, then the drag coefficients for the two wings may be obtained from equation (6) as follows:

$$
\begin{equation*}
c_{d_{c_{1}}}=\frac{8}{\pi}\left(\frac{t}{c}\right)_{1}^{2} \frac{m_{1} \beta_{1}}{\beta_{1}} F\left(\frac{y_{1} \beta_{1}}{m_{1} \beta_{1}}, m_{1} \beta_{1}\right) \tag{7a}
\end{equation*}
$$

$$
\begin{equation*}
c_{d_{2}}=\frac{8}{\pi}\left(\frac{t}{c}\right)_{2}^{2} \frac{m_{c} \beta_{2}}{\beta_{2}} F\left(\frac{y_{2} \beta_{2}}{m_{2} \beta_{2}}, m_{2} \beta_{2}\right) \tag{7b}
\end{equation*}
$$

Equation (7) shows that in $y_{1} \beta_{1}=y_{c} \beta_{2}$ and $m_{1} \beta_{1}=m_{c} \beta_{2}$

$$
\begin{equation*}
c_{d_{0_{1}}}=c_{d_{c_{2}}} \frac{(t / c)_{1}^{2} \beta_{2}}{(t / c)_{2}^{2}} \frac{c_{d_{1}}}{} \frac{(t / c)_{1}^{2} \cot \Lambda_{1}}{(t / c)_{2}^{2} \cot \Lambda_{2}} \tag{8}
\end{equation*}
$$

where $c_{d_{c_{1}}}$ and $c_{d_{o_{2}}}$ rofer to the spanwise positions y_{1} and $\frac{Y_{1} \beta_{1}}{\beta_{2}}$, respoctively. In a similar manner, it can be shown that if two wing are related according to $y_{1} \beta_{1}=y_{2} \beta_{2}$ and $m_{1} \beta_{1}=m_{2} \beta_{2}$, the section drag coefficients obtained for wings 1 and 2 from equations (B3) and (B5) are in the same ratio as that expressed in equation (8). Equation (8), therefore, may be generalized to apply to the total drag coefficient at the section or,

$$
\begin{equation*}
c_{d_{1}}=c_{d 2} \frac{(t / c)_{1}^{2} \cot \Lambda_{1}}{(t / c)_{2}^{2} \cot \Lambda_{2}} \tag{9}
\end{equation*}
$$

where $c_{d_{1}}$ and $c_{d_{2}}$ refer to the spanwise positions y_{1} and $\frac{y_{1} \beta_{1}}{\beta_{2}}$, respectively.

The wing-drag coefficients for wings 1 and 2 are given, respectively, by

$$
\begin{equation*}
c_{D_{1}}=\frac{1}{h_{1}} \int_{0}^{h_{1}} c_{d_{1}} d y_{1} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
C_{D_{2}}=\frac{1}{h_{2}} \int_{0}^{h_{2}} c_{d_{2}} d y_{2} \tag{11}
\end{equation*}
$$

By substituting for the integrand $c_{d_{1}}$ in equation (10) the relationshlp expressec in equation (9) and by substituting $\frac{d_{y} \beta_{2}}{\beta_{1}}$ for dy_{1}, equation (10) may be written as:

$$
C_{D_{I}}=\frac{(t / c)_{1}^{2} \cot \Lambda_{I}}{f_{2}(t / c)_{2}^{2} \cot \Lambda_{2}} \int_{0}^{h_{2}} c_{d_{2}} d y_{2}
$$

or

$$
\begin{equation*}
C_{D_{1}}=C_{D_{2}} \frac{(t / c)_{1}^{2} \cot \Lambda_{1}}{(t / c)_{2}^{2} \cot \Lambda_{2}} \tag{12}
\end{equation*}
$$

Equation (12) permits a rapid determination of the drag coefficient for vings of arbitrary sweepback, aspect ratio, and thiclness ratio (within limitations of airfoil theory) from data obtained for one swept-back wing for the appropriate range of aspect ratio and Mach number. For this purpose, use of a wing of 45° sweepback as the reference wing is most convenient. If the subscript 2 is used to refer to the parameters for the wing of 45° sweepback and the subscript 1 is dropped, equation (12) becomes

$$
\begin{equation*}
C_{D}=\frac{C_{D_{2}}(t / c)^{2} \cot \Lambda}{(t / c)_{2}^{2}} \tag{13}
\end{equation*}
$$

where C_{D} and. $C_{D_{2}}$ rofer to wings whose aspect ratios and Mach numbers are related by the following equations:

$$
\begin{align*}
& A_{2}=A \tan \Lambda \tag{14}\\
& \beta_{2}=\beta \cot \Lambda \tag{15}
\end{align*}
$$

The foregoing analysis shows that the results obtaincd for a wing of 45° sweepback and a given aspect ratio A_{2} can be transformed by means of equation (13) to all wings for which the aspectratio parameter A tan $A=A_{2}$ and the Mach number paramoter $\beta \cot \Lambda=\beta_{2}$.

The grouping of the parameters as indicated in the foregoing analysis permits the use of a singlo genoralized chart for presenting the drag results. This chart is discussed in the section entitled. "Results and Discussion."

Prandtl-Glauert rule modified for supersonic Plows.- In considering the linearized problem of supersonic flow past a wing, it is often convenient to refor the supersonic iesults for a given wing to a transformed wing at a reforence Mach numbex of $\mathrm{M}^{2}=2$. If this transiormation is usod a rule rosomblinc the Prandtl-Glauert rule (refergnce 3) for the subsonic case, where $M=0$ is the reforence Mach number, may be obtained. This rulo may be stated as follows:

The streanline field of the supersonic flow for a given body at a stream Mach number M may be calculatod by multiplying the given y^{-}and z-dimonsions, incluaing thoso for tho Mach lines, by the factor $\sqrt{M^{2}-1}$ and thon by calculating the flow about the resulting transformed body at the Mach nuxibor $\sqrt{2}$. Tho prossure p and velocity jncrements u for the givon body at the Mach numbor M can thon be obtained by multiplying tho calculatod prossure p and velocity incremonts u at corrosponding points of the transformed body by the factor $\frac{1}{\mathrm{M}^{2}-1}$.

It in interosting to note that the dorivation of formulas (13) to (15) as given in this papor corrosponds to utilizing tho solution for a transformod wing for the whole family of wings rolated to this transformation and then applying the aforomentioned modified Prandtl-Glauort rule.

RESUUTS AND DISCUSSION

Variation of section drag coefficient alons span.- Figure 2, which was introducec previously to illustrate the system of Mach lines, also shows the variation of section drag coefficient c_{d} along the span. The data are presented for a wing of 45° sweepback and thichness ratio of 0.10. Figure 2(a) gives the results for a wing of infinite aspect ratio and figure 2(b) gives the results for a wing of finite span.

In figure 2(a), the data are shown for Mach numbers of 1.100, 1.343 , and 1.414. The lovest Mach number 1.100 ropresents a case in which the wing leading edge diverges rapidiy from the Mach line (upper part of fig. 2(a)). In this case; the section drag coefficient c_{d} has a maximum value of 0.0542 at the center section, then drops sharply to zero at a distance of 1.13 chords from the center line. Beyond this point, the wing shows a negative drag, which approaches asymptotically the subsonic value of zero at an infinite distance from the wing center. This type of wave-drag distribution is similar to that indicated in figure 11 of reference 1 for a wing of 60° sweepback at a Mach number of 1.4.

For the higher Mach number 1.343, the spanwise variation of is markedly flatter. Unlike the preceding case, the drag coefficient does not have its maximum value at the centor section but, at first, increases in the outboard direction, then reaches a peak -and falls to zero-at-a distance from-the-cente: of 6.6 chords (not show in fie. 2(a)).

At the highest Mach number 1.414, the Mach line bocomes coincident with the wing loading odge. In this casc, the wing gives a very high dras and the soction drag coofficiont increases in the outboard direction, approaching infinity at an infinite distance from the wing centor.

Figure 2(b) illustratés the condition at which the aspect ratio is less than $1 \sqrt{M^{2}-1}$. The calculatod casc shown is for an aspoct ratio of 1.86 and Mach number of 1.10. In this case, the two wing tips cause increments in section drag cooficicient on each half of the wing, namely, $\Delta c_{d_{I}}$ and $\Delta c_{d_{I I}}$. The tip effoct $\Delta c_{d_{I}}$ at a given distanco from the tip is independent of the aspect ratio. The tip effect $\Delta c_{d_{I I}}$, however, is a function of tine aspect ratio.

Effect of wing tip on wing-drag coefficient. - Figure 3 shows

 the typical variation with aspect ratio of the increment in C_{D} due to the tip ΔC_{D}. The data are shown for a wing of 45° sweepback and a thickness ratio of 0.10 for Mach numers of $1.100,1.343$, and 1.414. The present analysis for the untapered wings indicated that if the aspect ratio is equal to or greator than $2 m /(m \beta+1)$, the integrated value of $\Delta c_{d I}$ over the wing is zoro. On this basis, if the aspect ratio of the wing is greater than $1 / \sqrt{M^{2}-1}$, the total increnent in drag contributed by tip is zoro. As the aspect ratio is reduced, the tip effect $\Delta C_{D_{I I}}$ wich occurs when the aspect rotio is smaller than $1 / \sqrt{M^{2}-1}$, hovever, leads to an increaso in C_{D}. The tip offect ΔC_{D} then roaches a peak value at a cortain aspect ratio, but as this aspect ratio is further decreased, ΔC_{D} drops sharply. In this caso, at aspoct ratios of approximately $0.5, \Delta C_{D}$ bocomes zero and assumes lares nogative valuos with furthor reductions in aspect ratio. Fox. applications to vory small aspect ratios, however, the theory may require modifications. The data in figure 3 shov that as the Mach number is incroased, the aspect ratio corresponding to zero value of ${\Delta C_{D}}$ becomes smaller.The tip effects show in figure 3 for the wing of 45° sweepback are similar for other wings of different swoopback at appropriate aspect ratios. The conversion formulas indicated in the section entitled "Analysis" indicate that tho aspect-ratio offects for wings of differont oweepback correspond qualitatively for equal values of the aspect-ratio parametor A tan A. Tho Mach numbars for each of the wings differ, however. An aspect retio of 0.8 . (fig. 3) for the wing of 45° sweepback at a Mach number of 1.10 for example corresponds to an aspect ratio of $0.8 \cot A$ at a Mach number equal to $\sqrt{1+\left[(1.10)^{2}-1\right] \tan ^{2} \Lambda}$ sor any other wing of sweepback ancle Λ.

Variation of wing-drag coefficient with Mach number, sweepback, and slenderness ratio.- Figure 4 sinows the variation of C_{D} with M for different sweepback angles with constant slenderness ratios. The slenderness ratio represents the ratio of the wing semispan messured along the leading edge to the maximum thichess on the center section. The data are presented for avoepack angles of 30°, $45^{\circ}, 52.5^{\circ}$, and 60° with slendemess ratios of 25 and 50. The wings in figure 4 for tho different slenderness ratios and sweepback angles are assumed to have the same wing aroa and the same. profile normal to the ving loading edge. The slenderness ratios aro based on a thichess ratio of 0.10 measurea in a direction
normal to the wing leading edge. The thickness ratio t / c measured in the flight direction, therefore, varies with sweepback as $\cos \Lambda$ or is equal to $0.1 \mathrm{cos} . \Lambda$. The aspect ratio is reduced with sweepback by the factor $\cos ^{2} \Lambda$. The aspect ratio is related to the slenderness ratio by the formula:

$$
A=0.2 \cdot\left(\frac{2}{t}\right) \cos ^{2} \Lambda
$$

The plan forms for the different wings are shown in figure 4.
The results in figure 4 show that, in general, the drag coefficient decreases with increasing sweepback. At Mach numbers for which the Mach linesare appreciably ahead of the wing leading edge, increasing the slenderness ratio or aspect ratio gives important reductions in calculated wave-drag coofficient.. At Mach numbers for which the Mach lines approach the wing leading edge ($M \rightarrow$ sec Λ), however, short wide wings give appreciable reductions in wave-drag coefficient. The figure also indicatos that the highest wave-drag coefficients for the normal range of aspect ratio occur at a Mach number equal to sec Λ.

Effect of aspect ratio on wing-drag coofficient. - Figure 5 indicates the effect of aspect ratio on the wave-drag coefficient for the wing. The data in figure 5 show the wave-drag-coofficient $C_{D} \tan \Lambda$ parameter $\frac{C_{D} \tan \Lambda}{100(t / c)^{2}}$ plotted against the aspect-ratio parameter A tan Λ These results are shown for various values of the Mach number parameter $\sqrt{\mathrm{M}^{2}-1}$ cot. Λ, which correspond to a range of Mach number from 1.0 to the secant of the angle of sweepback, or $1 \leqq M \leqq \sec \Lambda$.

Figure 5 shows that for a given value of the Mach number parameter, the maximum wave-drag coefficient occurs at a dofinite aspect ratio. For example, if $\Lambda=45^{\circ}$ and $\sqrt{M^{2}-1} \cot \Lambda=0.310$ (that is, $M=1.05$) the maximum value of C_{D} occurs at an aspect ratio of 0.85 . If the aspect ratio is decreased to value emaller than $0.85, C_{D}$ drops very sharply. Similarly, as the aspect ratio is increased from $0.85, C_{D}$ also decreases. Thus, in general for the Mach number parametor corresponding to $\sqrt{M^{2}-1} \cot \Lambda=0.310$ the maximum value of C_{D} occurs at an aspect ratio equal to $0.85 \cot \Lambda$

Application of curves of figure 5 to wings of arbitrary sweopback and aspect ratio- The scale labels and curves of figure 5
apply to the series of wings that may be derived from a basic 10 -percent-thick, 45° swept-back wing. The labels express the transformation equations (13) to (15). If Λ is set equal to 45° and t / c is set equal to 0.10 in these labels to correspond to the basic wing, the ordinates become simply C_{D}, the abscissa A (aspect ratio), and the curve parameter $\sqrt{\mathrm{M}^{2}-1}$. The results in figure 5 may be applied to all swept-back wings covering a range of aspect ratio from 0 to $10 \cot \Lambda$ corresponding to a range of Mach number from 1.0 to sec Λ. The data apply specifically to untapered vings with biconvex profiles at zero lift with the wing tips cut off in the direction of flight. The results, however, may be applied to indicate approximate results for profiles similar to the biconvex.

The following example is given in order to illustrate the use of figure 5. For a given wing

$$
\begin{aligned}
& A=70^{\circ} \\
& A=3 \\
& \frac{t}{C}=0.08 \\
& M=2.00
\end{aligned}
$$

In order to find C_{D} :

$$
\begin{gathered}
A \tan \Lambda=8.24 \\
\sqrt{M^{2}-1} \cot \Lambda=0.715
\end{gathered}
$$

From figure 5, for $A \tan \Lambda=8.24$ and $\sqrt{M^{2}=1} \cot \Lambda=0.715$

$$
\frac{C_{D} \tan \Lambda}{100(t / c)^{2}}=0.0123
$$

therefore

$$
C_{D}=0.00286
$$

Comparision of theory with experimental results.- Figure 6 shows a comparison of the theoretical results for wave-drag coefficient with data obtained from unpublished tests made at the Langley Laboratory for swept-back wings attached to a freely falling body. The comparison is shown for a wing of 45° sweepback for two aspect ratios at zero lift. The aspect ratios for the experimental wings based on over-all span were 3.6 and 5.4 . Because of the small. thickness of the wing section relative to the thickness of the fuselage (0.72 in . to 10.75 in.), the calculations assumed that the fuselage acted as a perfect reflection plane. On this basis, the aspect ratios of 3.6 and 5.4 corresponded to aspect ratios of 2.65 and 4.42 . The experimental wing had an NACA 65-009 profile taken in the direction normal to the wing leading edge or a thickness ratio of 0.0636 in the flight direction; whereas, the calculated results are based on a biconvex havinc the same maximum thickness ratio as the experimental profile. The calculated drag coefficient C_{D} was obtained by adding the skinminiction drag coefficient of $0.00 \cong 7$ to the calculated wave-drag coefficient. This value of 0.0027 for the skin-friction drag coofficient was obtained as the minimum drag coefficient from the unpublished, experimental results-and this value appears somewhat low. The comparison is shown for a range of Mach number from 1.0 to 1.25 . The plan form of the wings are show in figure 6 .

The comparison in figure 6 indicates that the calculated values of the wave-drag. coefficients are of the order of magnitude of the experimental results. The agreement appears to be closer for the wing of higher aspect ratio than for the ving of smaller aspect ratio. It should be noted that in addition to the approximations inherent in the linearized theory, the calculations do not take account of factors such as fuselage interference, boundary-layer effects, and the exact profile.

CONCIUDIIG REMARKS

A theoretical investigation has been made of the supersonic wave drag of untapered swept-back wings at zero lift. The wing section was biconvex and the wing tip was considered to be cut off

in the direction of flight. The investigation was limited to a range of stream Mach number from 1.0 to a value corresponding to that at which the Mach line coincided with the wing leading edge. For this range of Mach number, the following conclusions have been drawn:

1. In general, the calculated wave-dras coefficient decreased wh th increasing sweepoack.
2. At Mach numbers for which the Mach lines are appreciably ahead of the wing leading edge, increasing the slenderness ratio or aspect ratio gave important reduction in the calculated wavedras coefficient.
3. At Mach nunbers for which the Mach lines approach the wing leading edge (Mach numbers approaching a value equal to the secant of the angle of sweopback), decreasing the slencerness ratio or aspect ratio reduced the calculated wave-deag coefliciont.
4. The highest calculated wave-drag coefricients for the normal rance of aspect ratio occurred at a Mach namber equal to the secant of tho anglo of sweopback.
5. The maximum wave-drag cooficient occuried at a definite aspect ratio which is determined by the Mach number and angle of sweepback.
6. For aspect ratios greater than $1 / \sqrt{M^{2}-1}$, whero M is the Mach number, the increment in wave-drag coefficient for the wing contributed by the tip was zero.
7. The variation of the drag with Mach number obtained for one sweepback angle for appropriate aspect retios may be presented in a unified form so that the drag for the complete range of sweepback anglo, aspoct ratio, and Mach number may bo diroctly determined from a sincle chart.
8. A comparison of the theory for a Mach numbor range from 1.0 to 1.25 with resulte obtained from tosts of swept-back wing attached
to a freely falling body indicated that the calculated values were of the order of magnitude of the experimental results.

Langley Memorial Aeronautical Laboratory
National Advisory Cormittee for Aeronautics
Langley Field, Va.

APPHIDIX A

FORMULAS FOR THE INIEGRAND u IV EQUATION (3) FOR FINITME
UNTAPERED SWIEPT-BACK WITGS OF BICONVEX RROFILE .
AT ZHRO LIFT $\left[m=\cot \Lambda \leq \frac{1}{\beta}\right]$

In order to satisfy the boundary condition for a finite sweptback wine of biconvex profile, the integrand u in equation (3). may be expressed in terms of components caused by elenentary source lines as follows:

$$
\begin{align*}
& u=u_{0,0}+u_{c, 0}+\bar{u}_{0,0}+\bar{u}_{c, 0} \\
&-\left(\frac{1}{D} u_{0,0}-\frac{1}{D} u_{c, 0}+\frac{1}{D} \bar{u}_{0,0}-\frac{1}{D} \bar{u}_{c, 0}\right) \\
&-\left[\frac{\left.u_{h / m, h}+\bar{u}_{h / m,-h}-\left(\frac{1}{D} u_{h / m, h}+\frac{1}{D} \bar{u}_{1 / m},-h\right)\right]}{}\right. \tag{AI}
\end{align*}
$$

where the subscript notation indicates the origin of the source line. The bars over u refer to the source lines caused by the opposite wing panel; that is, \bar{u} indicates a source line with a reversal in the aign of m .

In equation (AI), the u-functions are given by the real parts of the followine expressions:

$$
\begin{aligned}
& u_{\xi, \eta}(x, y)=I \cosh ^{-1} \frac{x-\xi \cdots m \beta^{2}(y-\eta)}{\beta|y-\eta-m(x-\xi)|} \\
& \bar{u}{ }_{\bar{\xi}, \eta}(x, y)=I \cosh ^{-1} \frac{x-\xi+m \beta^{2}(y-\eta)}{\beta|y-\eta+m(x-\xi)|}
\end{aligned}
$$

where \dot{S}, η represents the origin of the elementary source lines. For the biconvex profile,

$$
\frac{d z}{d x}=\varepsilon \frac{t}{c}
$$

and from equation (5), the factor

$$
I=2 \frac{t}{c} \frac{V}{\pi} \frac{m}{\sqrt{1-m^{2} \beta^{2}}}
$$

The symbol $\frac{1}{D}$ in equation (Al) refers to an integration operation which represents the influence of the uniform distribution of sink lines along the chord of the biconvex profile. This symbol is defined by the following expressions:
$\frac{1}{D} u_{\tilde{\xi}, \eta}(x, y)=\int_{x-\beta y}^{0} \frac{d I}{\partial \xi} \cosh ^{-1} \frac{x-\xi-m \beta^{2}(y-\eta)}{\beta|y-\eta-m(x-\xi)|} d \xi$
$=(y-\eta) \frac{d I}{d x}\left\{\frac{\sqrt{1-m^{2} \beta^{2}}}{m} \cosh ^{-1} \frac{x-\xi}{\beta|y-\eta|}\right.$

$$
\left.-\frac{1}{m}\left[1-\frac{m(x-\xi)}{y-\eta}\right] \cosh ^{-1} \frac{\frac{x-\check{5}}{\beta(y-\eta)}-m \beta}{\left|1-\frac{m(x-\xi)}{y-\eta}\right|}\right]
$$

where, for a biconvex profile

$$
\begin{aligned}
\frac{d I}{d x} & =-\frac{V}{\pi} \frac{m}{\sqrt{1-m^{2} \beta^{2}} \frac{d^{2} z}{d x^{2}}} \\
& =\frac{4}{c}(t / c) \frac{V}{\pi} \frac{m}{\sqrt{1-n^{2} \beta^{2}}}
\end{aligned}
$$

Equation (AZ) may bo expressed as a function of $\frac{x-\frac{Y}{y} \text {, that is }}{y-\eta}$,

$$
\frac{1}{D} u, \eta(x, y)=(y-\eta) f\left(\frac{x \cdots \xi}{y \cdots \eta}\right)
$$

Then

$$
\frac{1}{\mathrm{D}} \bar{u}_{\mathfrak{E}, \eta}(x, r)=-(\dot{y}-\eta) \mathrm{f}\left[\frac{x-g}{-(y \cdots \eta)}\right]
$$

The linits of integrations with recara to x for the section drag coelficiente and with regerd to y for the total wing-drag coefficientsare discusced. The u-components cavsed by each of the elementary source linos are sero at all points outside of the respective Mach cones. The functions for the v-integrand in equation (3) are therofore evaluated along the section for values of x beginning at the forward boundary of the Macin cone. This integration gives the section-drag"coefficient comporents. Similarly, in order to obtain the wing drag coefficient, the section drag coofficient components obtajnod from the respoctive u-functions are ovaluatod along the wing span for values of y contained within the Mach cono. The following table refors to one siae of the wing (x and y positive) and shows the limfts of integration for x and y for the required u-functions:

u-components	Limits of integration			
	x		J	
	Lower limit	Upper limit	Lower limit	$\begin{aligned} & \text { Upper } \\ & \text { limj.t } \end{aligned}$
$\begin{array}{ll} u_{0,0} & \bar{u}_{0,0} \\ \frac{I}{D} u_{0,0} & \stackrel{I}{D}_{D}^{0} 0,0 \end{array}$	y / m	$\frac{\mathrm{y}}{\mathrm{m}}+\mathrm{c}$	0	h
$\begin{array}{ll} u_{c, 0} & \bar{u}_{c, 0} . \\ \frac{1}{D} u_{c, 0} & \frac{\bar{D}}{\overline{\mathrm{u}}}{ }_{c, 0} \end{array}$	$y \beta+c$	$\frac{y}{m}+c$	0	h
$\frac{u_{h / m, h}}{\frac{1}{D} u_{h / m, h}}$	$\frac{h}{m}(\underline{m} \beta+1)-y \beta$	$\frac{\mathrm{y}}{-\mathrm{m}}+\mathrm{c}$	$\begin{gathered} n \cdots \frac{m c}{m \beta+1} \\ \left(1 f \quad A>\frac{2 m}{m \beta+1}\right) \\ 0\left(\text { if } A \leq \frac{2 m}{m \beta+1}\right) \end{gathered}$	h
$\begin{aligned} & \bar{u}_{h / m,-h} \\ & \frac{\bar{l}_{n}}{\bar{u}_{n / m}}-\mathrm{h} \end{aligned}$	$y \beta+\frac{h}{m}(m \beta+1)$	$\frac{y}{m}+c$	$\begin{gathered} \frac{h(m \beta+1)-m c}{1-m \beta} \\ \left(\text { if } A>\frac{2 m}{m \beta+1}\right) \\ 0\left(i f . A \leqq \frac{2 m}{m \beta+1}\right) \end{gathered}$	h

APPENDIX B

FORMULAS FOR WAVE-DRAG COEFFICIENTS FOR FIIIITB UNTAPERED
SWEPTBACK WINGS OF SYMMETRICAL BICONVEX PROFILE
AT ZERO INIT $\left[m=\cot \Lambda \leq \frac{1}{\beta}\right]$
Section Drag Coefficients

In the following analysis the quantities \bar{y} and K are employed nondimensionally in terms of the semichord. The equations for the drag coefficients in all cases refer to the real parts of the indicated expressions.

Section drag coefficients without tip effect. - The section drag coefficient for the given wing at a apanvise position y and Mach number M without the tip effect was found to be as follows:

The term $\frac{2 m}{1-m \beta}$ represents a convenient integration limit which indicates the intersection of the Mach line from the centersection trailing edge with the ring leading edge. For $y=K m<\frac{\hat{c}_{\mathrm{m}}}{1-\mathrm{m} \beta}$

$$
\begin{align*}
& c_{d_{\infty}}(y)=\frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left(K^{3}\left(\cosh ^{-1} \frac{K+2}{K m^{1}}-2 \cosh ^{-1} \frac{I}{m^{\prime}}\right)\right. \\
& +\frac{1}{3 \sqrt{1-m^{\prime 2}}}\left\{2 \cosh ^{-1} \frac{K^{\prime}\left(1-m^{\prime 2}\right)}{2 n^{\prime}}+2\right. \\
& -a\left(2 K^{3}-3 K-I\right) \cosh ^{-1} \frac{K\left(1+m^{2} 2\right)+c}{2 m^{1}(K+1)} \\
& +4 K^{\left(2 K^{2}-3\right)} \cosh ^{-1} \frac{1+m^{\prime 2}}{2 m^{1}}+K^{2}\left[\operatorname{AK}\left(1-m^{\prime}\right)\right. \\
& \left.-\sqrt{(1-m \cdot c)\left[(K+c)^{2}-\left(K m^{\prime}\right)^{2}\right]}\right) \tag{BIa}
\end{align*}
$$

For $y=K m>\frac{2 m}{1-m \beta}$, the following expression is added to equalion (BIa).

$$
\begin{align*}
& \frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left\{K^{3} \cosh ^{-1} \frac{K-2}{K m^{\prime}}\right. \\
& -\frac{1}{3 \sqrt{1-n^{\prime}}}\left[2 \cosh ^{-1} \frac{K\left(1-m^{\prime} 2\right)-2}{2 m^{\prime}}\right. \\
& \quad+2\left(2 K^{3}-3 K \div 1\right) \cosh ^{-1} \frac{K\left(1+m^{\prime} 2\right)-2}{2 m^{\prime}(K-1)} \\
& \left.\quad+K^{2} \sqrt{\left(1-m^{\prime 2}\right)\left[(K-2)^{2}-\left(K m^{\prime}\right)^{2}\right]}\right] \tag{BIb}
\end{align*}
$$

where $m^{\prime}=m \beta$.
For the special case $m=\frac{1}{\sqrt{M^{2}}-1}$, the Mach line coincides
with the wing leading edge, and the expression for the drag coefficlient obtained as a limiting case ($\mathrm{m}^{\prime} \rightarrow \mathrm{m}$) for all values of y becomes:
$c_{d_{\infty}}(y)=\frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left\{y^{\prime} 3 \cosh ^{-1} \frac{y^{\prime}+2}{y^{\prime}}-\frac{2}{3}\left[\frac{y^{\prime}\left(3 y^{\prime}+4\right)\left(y^{\prime}-1\right)-2}{\sqrt{y^{\prime}+1}}\right]\right\}$
where

$$
y^{\prime}=y \beta
$$

At the center section, where y or $K=0$, equation (BIa) becomes:

$$
c_{d_{\infty}}=\frac{3 \varepsilon}{3 \pi}\left(\frac{t}{c}\right)^{2} \frac{m}{\sqrt{1-m^{2} \beta^{2}}} \operatorname{cosi} \cdot \cdots \frac{1}{m \beta}
$$

At the center section, for $y=0$ and $m=\frac{1}{\beta}$, equation (B2) becomes:

$$
c_{\dot{\varepsilon}_{c 1}}=\frac{32}{3 \pi}\left(\frac{t}{c}\right)^{2} m
$$

Increment in section dras coefficient cavsed by wing tips.The increment in co caubed by the tips dependis on various factors, such as the sweep ancle, aspect ratio, and hach number. The following types occur in an untapered ving:
I. If the aspect ratio of the wing is equal to or greater than $I / \sqrt{M^{2}-1}$ each tip affects solely its om half of the wing. In this case the effect of the tip is limited to the region of the Wing outboard and rearvard of the front Mach line originating from this tip. (See fig. 2(b).) The region of the wing affected is between values of y from $h-\frac{2 m}{m \beta+1}$ to h.

The increment in section drag coefficient at a Mach numbor M and spanvise position y caused by the tip we found to be as follows:

$$
\begin{align*}
& \Delta c_{d_{I}}(y)=\frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left\{\frac { y _ { a } ^ { \prime } } { 1 2 m ^ { 2 } } \left[\left(y_{a} a \frac{a+m^{2}}{m^{2}}\right.\right.\right. \\
& \left.\left.-12 m^{\prime}\right) \cosh { }^{-1} \cdot \frac{y_{a}{ }^{\prime}+2 m^{\prime}}{\left|m^{\prime} y_{a}^{\prime}\right|}+\left(2 m^{\prime}-3 y_{a}^{\prime}\right) \sqrt{\left(\frac{y_{a} a^{\prime}}{m^{\prime}}+2\right)^{2}-y_{a}^{\prime 2}}\right] \\
& \left.-\frac{2}{3 \sqrt{1-m^{\prime 2}}} \cosh ^{-1} \frac{\left(1-m^{2}\right) y_{a}+2 n^{\prime}}{2 m^{2}}\right\} \tag{B3}
\end{align*}
$$

where the subscript a indicates that the x-axis is shifted to the tip section, and $y_{a}{ }^{\prime}=y_{a} \beta$ and $m^{\prime}=m \beta$. In the plan form of the wing

$$
y=h+y_{a}
$$

In equation (B3) values for y_{a} may be taken from $-\frac{2 m}{m \beta+1}$ to 0 . When the Mach line is coincident with the leading edge of the airfoil; that is, $m=\frac{1}{\sqrt{M^{2}-1}}$, the expression for $\Delta c_{d_{I}}$ becomes:

$$
\begin{align*}
\Delta c_{d_{I}}(y)= & \frac{4}{\pi}\left(\frac{t}{c}\right)^{2} m\left[\frac{y_{a}^{\prime}\left(y_{a}^{\prime 2}-4\right)}{2} \cosh ^{-1} \frac{\mathrm{ya}^{\prime}+2}{\left|y_{a}^{\prime}\right|}\right. \\
& -\frac{\left.\sqrt{y_{a}^{\prime}+1}\left(3 y_{a}{ }^{\prime 2}-2 y_{a}^{\prime}+4\right)\right]}{3} \tag{BL}
\end{align*}
$$

II. If the aspect ratio of the wing is less than $\frac{1}{\sqrt{M^{2}} \cdots 1}$, the tip on the opposite wing contributes an increment in c_{d} in additron to that -discussed under type-I. The increment in ${ }^{-} c_{d}$ at a section caused by the opposite tip was obtained in the following form:

$$
\begin{align*}
& \Delta c_{d_{I I}}(y)=\frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left(\frac { y _ { b } } { m ^ { \prime } } \left\langle\frac{1}{1 \hat{c}}\left(7 y_{b}^{\prime}-10 h^{\prime}-2 m^{\prime}\right) \sqrt{\left.\left[y_{b}^{\prime}-2\left(h^{\prime}-m^{\prime}\right)\right]^{2}-\left(m^{\prime} y_{b}\right)^{\prime}\right)^{2}}\right.\right. \\
& \left.-\left[\frac{y_{b}^{\prime 2}}{12}\left(14+m^{2}\right)-3 h^{\prime} y_{b}^{\prime}+2 h^{\prime 2}-m^{\prime 2}\right]\left[\cosh ^{-1} \frac{y^{\prime}-2\left(h^{\prime}-m^{\prime}\right)}{m^{\prime} y_{b}^{\prime}}\right]\right\} \\
& +\frac{2}{3 m^{3} \sqrt{1-m}}\left[2 y_{b}^{\prime 3}-6 y_{b}^{\prime 2} h^{\prime}+3 y_{b}^{\prime \prime}\left(2 h^{\prime 2}-m^{\prime 2}\right)-2 n^{\prime 3}+3 m^{\prime 2} h^{\prime}-m^{\prime 3}\right] \\
& \left.\left[\cosh ^{-1} \frac{y_{b}^{\prime}\left(1+m^{\prime 2}\right)-2\left(h^{\prime}-m^{\prime}\right)}{2 m^{\prime}\left(y_{b}^{\prime}-h^{\prime}+m^{\prime}\right)}\right]\right) \tag{By}
\end{align*}
$$

where the subscript b indicates that the x-axis is shifted to the opposite tip section, and where $\bar{J}_{b}^{\prime}=y_{b} \beta, m^{\prime}=m \beta$, and $h^{\prime}=h \beta$. In the plan form of the wing

$$
\mathrm{y}=\mathrm{y}_{\mathrm{b}}-\mathrm{h}
$$

The limits for y_{b} to bo used in equation (B5) depend on the value of aspect ratio A relative to the parameter $\frac{2 m}{m \beta+1}$. Thus
(a) If the aspect ratio of the wing is greater than $\frac{2 m}{m \beta+1}$, the front Mach line from the opposite tip intersects the trailing edge at a value of $y_{b}=\frac{2(h-m)}{1-m \beta}$ so that values for y_{b} in equation (B5) may be taken from $\frac{2(h-m)}{1-m \beta}$ to oh at the tip. (See fig. 2(b).)
(b) If the aspoct ratio A is equal to or lese than $\frac{2 m}{m \beta+1}$, the front Mach line from the opposite tip intersects the centor section and values for y_{b} in equation (B5) may be taken from h to $2 h$. In this case, the increment in Δc_{d} discussed under type I is obtained at spanwise positions of y_{a} from $-h$ to 0 . When $m=\frac{1}{\sqrt{M^{2}-1}}$, oquation (B5) becomes:

$$
\begin{aligned}
\Delta c_{d_{I I}}= & \frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left\{y_{b},\left[\frac{1}{12}\left(7 y_{b}^{\prime}-10 h^{\prime}-2\right) \sqrt{y_{b}^{\prime}-2\left(h^{\prime}-1\right)^{2}-y_{b}^{\prime 2}}\right.\right. \\
& \left.-\left(\frac{5}{4} y_{b}^{\prime 2}-3 h^{\prime} y_{b}^{\prime}+2 h^{\prime 2}-1\right)\left(\cosh ^{-1} \frac{y_{b}^{\prime}-h^{\prime} h^{\prime}+2}{y_{b}^{\prime}}\right)\right] \\
& \left.+\frac{2}{3} \frac{\left[2 y_{b}^{\prime 3}-6 y_{b}^{\prime} h^{\prime}+3 y_{b}^{\prime}\left(2 h^{\prime 2}-1\right)-2 h^{\prime}+3 h^{\prime}-1\right] \sqrt{1-h^{\prime}}}{\sqrt{y_{b}^{\prime}+1-h^{\prime}}}\right\}
\end{aligned}
$$

The total increment in drag coefficient at a section caused by the tips is given by

$$
\Delta c_{\mathrm{d}}=\Delta c_{\mathrm{d}_{\mathrm{I}}}+\Delta c_{\mathrm{d}_{\mathrm{II}}}
$$

and the total drag coefficient at the section is

$$
c_{d}=c_{d_{\infty}}+\Delta c_{d}
$$

Wing-Drag Coefficients

Wing-drag coefficient without tip effects.- If the aspect ratio is equal to or les's than $\frac{2 m}{1-m \beta}$, the wing-drag coefficient without the tip effect is
$C_{D_{\infty}}=\frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left\{\frac{A^{\prime 2}}{12 m^{\prime}}\left(3 A^{\prime} \cosh ^{-1} \frac{A^{\prime}+2 m^{\prime}}{A^{\prime} m^{\prime}}\right.\right.$

$$
\begin{aligned}
& -6 A^{\prime} \cosh { }^{-1} \frac{1}{m^{\prime}}-\sqrt{A^{\prime}\left(1-m^{\prime 2}\right)+4 m^{\prime}\left(A^{\prime}+m^{\prime}\right)} \\
& \left.+2 A^{\prime} \sqrt{\left.1-m^{\prime}\right)^{2}}\right)+\frac{1}{\left.3 m^{\prime 3} \sqrt{1-m^{\prime}}\right]^{\prime}}\left[2 m^{\prime 3} \cosh ^{-1} \frac{A^{\prime}\left(1-m^{\prime} 2\right)+2 m^{\prime}}{2 m^{\prime 2}}\right. \\
& +\left(2 m^{\prime 3}+3 A^{\prime} m^{\prime 2}-A^{\prime 3}\right) \cosh ^{-1} \frac{A^{\prime}\left(1+m^{\prime 2}\right)+2 m^{\prime}}{2 m^{\prime}\left(A^{\prime}+m^{\prime}\right)} \\
& \left.+\left(2 A^{\prime 3}-6 A^{\prime} m^{\prime 2}\right) \cosh ^{-1} \frac{1+m^{\prime 2}}{2 m^{\prime}}\right]
\end{aligned}
$$

where $A^{\prime}=A \beta$ and $m^{\prime}=m \beta$

If the aspect ratio is greater than $\frac{c m}{1-m \beta}$, the wing -drag coefficient without tip effect is,

$$
\begin{aligned}
& C_{D}=\frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left(\frac { A ^ { \prime 2 } } { 1 2 m ^ { \prime } } \left[3 A^{\prime}\left(\cosh ^{-1} \frac{A^{\prime}+2 m^{\prime}}{A^{\prime} m^{\prime}}+\cosh ^{-1} \frac{A^{\prime}-2 m^{\prime}}{A^{\prime} m^{\prime}}\right)\right.\right. \\
& -6 A^{\prime} \cosh ^{-1} \frac{1}{m^{\prime}}-\sqrt{A^{2}\left(1-m^{\prime 2}\right)+4 m^{\prime}\left(A^{\prime}+m^{\prime}\right)} \\
& \left.-\sqrt{A^{2}\left(1-m^{\prime}\right)^{2}+4 n^{\prime}\left(m^{\prime}-A^{\prime}\right)+2 A^{\prime} \sqrt{1-m^{2}}}\right] \\
& +\frac{1}{3 m^{\prime} \sqrt{1-m^{\prime}}}\left\{2 m ^ { 3 } \left[\cosh ^{-1} \frac{A^{\prime}\left(1-m^{\prime}\right)+2 m^{\prime}}{2 m^{2}}\right.\right. \\
& \left.-\cosh ^{-1} \frac{A^{\prime}\left(1-m^{2}\right)-2 m^{\prime}}{2 m^{\prime 2}}\right] \\
& +\left(3 A^{\prime} m^{\prime 2}-2 m^{\prime}-A^{3}\right) \cosh ^{-1} \frac{A^{\prime}\left(1+m^{2}\right)-2 m^{\prime}}{2 m^{\prime}\left(A^{\prime}-m^{\prime}\right)} \\
& +\left(3 A^{\prime} m^{\prime 2}+2 m^{\prime}-A^{\prime}\right) \cosh ^{-1} \frac{A^{\prime}\left(1+m^{2}\right)+c m^{\prime}}{2 m^{\prime}\left(A^{\prime}+m^{\prime}\right)} \\
& \left.+\left(2 A^{3}-6 A^{\prime} m^{2} \cdot \cosh ^{-1} \frac{1+m^{\prime 2}}{2 m^{\prime}}\right\}\right)
\end{aligned}
$$

Increment in wing-drag coefficient caused by wing tips.- If the aspect ratio of the wing is equal to or greater than $1 / \beta$, the contribution of the wing tips to the wing-drag coefficient is zero.

If the aspect ratio of the wing is equal to or greater then $\frac{2 m}{m \beta+1}$, the total increment in C_{D} caused by the local tip, or ${\Delta C_{D_{I}}}$, is zero; and the increment ΔC_{D} is obtained solely from the effect of the tip located on the opposite half of the wing, or ${\Delta C_{D_{I I}}}$. For this case, integration of equation (B5) over the wing yields:

$$
\begin{aligned}
\Delta C_{D}= & \frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left\{\frac { 1 } { 3 m ^ { \prime } 3 \sqrt { 1 - m ^ { \prime 2 } } } \left[\left(A^{\prime}-2 m^{\prime}\right)\left(A^{\prime}+m^{\prime}\right)^{2} \cosh ^{-1} \frac{m^{\prime} A^{\prime}+1}{A^{\prime}+m^{\prime}}\right.\right. \\
& \left.+\left(A^{\prime}+2 m^{\prime}\right)\left(A^{\prime}-m^{\prime}\right)^{2} \cosh ^{-1} \frac{1-m^{\prime} A^{\prime}}{\left|A^{\prime}-m^{\prime}\right|}\right] \\
& \left.+\frac{A^{\prime}}{3 m^{\prime 3}}\left[6 m^{\prime 2}-A^{\prime 2}\left(2+m^{\prime 2}\right)\right] \cosh ^{-1} \frac{1}{A^{\prime}}-\frac{A^{\prime}}{3 m^{\prime}} \sqrt{1-A^{\prime 2}}\right\}
\end{aligned}
$$

If the aspect ratio of the wing is less than $\frac{2 m}{m \beta+1}$, the increment ΔC_{D} is affected by both wing tips. For this case, integration of equations (B3) and (B5) yields:

$$
\begin{aligned}
& \Delta C_{D}=\frac{8}{\pi}\left(\frac{t}{c}\right)^{2} \frac{m}{3 m^{\prime} \sqrt{1-m^{\prime 2}}}\left[\frac{1}{\left(A^{\prime}-2 m\right.}\right)\left(A^{\prime}+m^{\prime}\right)^{2} \cosh ^{-1} \frac{m^{\prime} A^{\prime}+1}{A^{\prime}+m^{\prime}} \\
& +\left(A^{\prime}+2 m^{\prime}\right)\left(A^{\prime}-m^{\prime}\right)^{2} \cosh ^{-1} \frac{1-m^{\prime} A^{\prime}-2 m^{\prime}}{\left|A^{\prime}-m^{\prime}\right|} \cosh { }^{-1} \frac{2 m^{\prime}-A^{\prime}\left(1-m^{\prime 2}\right)}{2 m^{\prime 2}} \\
& \left.-\left(2 m^{\prime 3}-3 m^{\prime 2} A^{\prime}+A^{\prime 3}\right) \cosh ^{-1} \frac{2 m^{\prime}-A^{\prime}\left(1+m^{\prime 2}\right)}{12 m^{\prime}\left(m^{\prime}-A^{\prime}\right)!}\right] \\
& +\frac{A^{\prime}}{3 m^{3}}\left\{\left[6 m^{\prime 2}-A^{\prime 2}\left(2+m^{\prime 2}\right)\right] \cosh ^{-1} \frac{I}{A^{\prime}}+\frac{A^{\prime}}{4} \sqrt{4 m^{\prime}\left(m^{\prime}-A^{\prime}\right)+A^{2}\left(I-m^{2}\right)}\right\} \\
& \left.+\frac{A^{\prime 3}}{4 m^{\prime} 3} \cosh ^{-1} \frac{2 m^{\prime \prime}-A^{\prime}}{m^{\prime} A^{\prime}}-\frac{A^{\prime}}{3 m^{\prime}} \sqrt{1-A^{\prime 2}}\right)
\end{aligned}
$$

Total wing-drag coefficient. - The total wing; drag is obtained as the sum,

$$
C_{D}=C_{D_{\infty}}+\Delta C_{D}
$$

where the components $C_{D_{c}}$ and ΔC_{D} are calculated from the foregoing equations for the wing-drag coefficient appropriate to the aspect ratio of the wing.

Wing-drag coefficient for special case $m=\frac{1}{\beta}$, When the Mach line coincides with the wing leading edge $\left(m=\frac{1}{\beta}\right)$, the wing-drag coefficient obtained for all aspect ratios as a Imiting case ($m^{\prime} \rightarrow 1$) is equal to the real part of the following expression:

$$
\begin{aligned}
C_{D}= & \frac{8}{\pi}\left(\frac{t}{c}\right)^{2} m\left(\frac{A^{3}}{4}\left(\cosh ^{-1} \frac{A^{\prime}+2}{A^{\prime}}+\cosh ^{-1} \frac{2-A^{\prime}}{A^{\prime}}\right)+A^{\prime}\left(2-A^{\prime 2}\right) \cosh ^{-1} \frac{1}{A^{\prime}}\right. \\
& \left.+\frac{1}{6}\left\{\left[3 A^{C^{2}}+2 A^{\prime}\left(1-3 \sqrt{A^{\prime}+1}\right)-8\right] \sqrt{1-A^{\prime}}+\left(3+2 A^{\prime}-3 A^{2}\right) \sqrt{A^{\prime}+1}\right\}\right)
\end{aligned}
$$

Wing-Drag Coefficionts at Mach Nrumber of 1.0

The drag coefficient for the wing at: $M=1.0$ may be expressed in terms of the following formulas which were obtained by integrating over the wing the limiting values for c_{d} in equations (B1), (B3), and (B5) as the factor $\beta=\sqrt{M^{2}-1}$ approaches zero:
(1) If the aspect ratio of the wing is equal to or greater than 2 m

$$
\begin{align*}
& C_{D}=\frac{8}{3 \pi}\left(\frac{t}{c}\right)^{2} \frac{m}{h}\left(\int _ { 0 } ^ { 2 } m \left[\left(-K^{3}+6 K+4\right) \log _{e}(K+2)-3 K^{3} \log _{e} 2 K\right.\right. \\
& \left.+\left(4 K^{3}-6 K-2\right) \log _{e}(K+1)+K^{2}(K-2)\right] d K \\
& +\int_{2}^{m / m} m\left[\left(-K^{3}+6 K-4\right) \log _{e}(K-2)-\left(K^{3}-6 K-4\right) \log _{e}(K+2)\right. \\
& \left.+\left(4 K^{3}-6 K\right) \log _{e}\left(K^{2}-1\right)+2 \log _{e} \frac{K-1}{K+1}-6 K^{3} \log _{\theta} K\right] d K \\
& +\int_{V-2 m}^{i h}\left[\frac{(y-h)^{3}}{2 m^{3}}+\frac{3(h-y)}{m}-2\right]\left[10_{6} 2(y-h+2 m)\right] \\
& +\left[\frac{(y+h)^{3}}{2 m^{3}}+\frac{3 y\left(y^{2}-h^{2}\right)}{m^{3}}-\frac{3(h+y)}{m}\right]\left[10 \varepsilon_{e} m(y+h)\right] \\
& -\left(\frac{4 y^{3}}{m^{3}}-\frac{6 y}{m}-2\right)\left[\log _{e} 2 m(y+m)\right] \\
& \left.\left.+\frac{y+h}{4 m^{3}}(7 y-3 h-2 m)(y-h+2 m)\right\} d y\right) \tag{B6}
\end{align*}
$$

where $K=\frac{y}{m}$

In equation (B6), the first two integrals represent the drag coefficient for the wing without the tip effect; whereas, the last integral represents the effect of the tips $X_{D_{I I}}$. For this case, in which the aspect ratio is equal to or greater than am, the tip effect $\Delta C_{D_{I}}$ is zero; hence the integral for the section increments in c_{d} is not given in equation (B6). Equation (B6) has been solved for a sweepback angle of 45° and the results for this sweep angle may bo converted to other wings of arbitrary sweepback by the formulas (13) to (15). For the wing of 45° sweepback, $m=1$ and and $A \geqq 2$, equation (B6) yields the following result:

$$
\begin{align*}
C_{D}= & \frac{2}{3 \pi}\left(\frac{t}{c}\right)^{2}\left[\left(-A^{3}+12 A+16\right) \log _{\theta}(A+2)\right. \\
& \left.+\left(-A^{3}+1 \angle A-16\right) \log _{\theta}(A-2) \div 2 A\left(A^{2}-18\right) \log _{\theta} A-4 A\right] \tag{BT}
\end{align*}
$$

(2) If the aspect ratio of the wing is smaller than $2 m$, the upper limit of the first integral in equation (136) is reduced from 2 to h / m, the second integral vanishes, and the lower limit for the third integral is reduced from $h-2 \mathrm{~m}$ to zero. For this case, however, in which the aspect ratio is less than $2 \mathrm{~m}, \Delta C_{D_{I}}$ is not zero, and the following integral must be aided to those in equation (B6) to obtain C_{D} :

$$
\begin{align*}
\Delta C_{D_{I}}= & \frac{8}{3 \pi}\left(\frac{t}{c}\right)^{2} \frac{m}{h} \int_{-h}^{10}\left[\left(\frac{y_{a}^{3}}{2 m^{3}}-\frac{3 y_{a}}{m}\right) \log _{e} \frac{2\left(y_{a}+2 m\right)}{m y_{a}}\right. \\
& \left.+2 \log _{0} \frac{m^{2}}{y_{a}+2 m}+\frac{y_{a}\left(2 m-3 y_{a}\right)\left(y_{a}+2 m\right)}{4 m^{3}}\right] d y_{a} \tag{38}
\end{align*}
$$

where

$$
\mathrm{y}_{\mathrm{a}}=\dot{\mathrm{y}}-\mathrm{h}
$$

For the wing of 45° sweepback, $m=1$, and $A<2$, equations (B6) and (B8) yield the same result for C_{D} as that obtained for values of A.greater than 2, as expressed by equation (B7). In this case, the real part of $\log _{e}(A-2)$ is used.

REFERENCES

1. Jones, Robert T.: Thin Oblique Airfoils at Supersonic Speed. IVACA TN No. 1107, 1946.
2. Puckett, Allen E.: Supersonic Wave Drag of Thin Airfoils. Jour. Aero. Sci., vol. 13, no. 9, Sept. 1946, pp. 475-484.
3. Göthert, B.: Ebene und raümliche Strömung bei hohen Unterschallgeschwindigkeiten (Erweiterung dor Prandtlschen Regel). Bericht 127 der Lilienthal-Geselischaft für Iuftfahrtforschung, 1940, pp. 97-101.

(a) Without tip effect at several Mach numbers.

Fiqure 2. Typical distributions of section wave-draq coefficient's alonq wing span. Biconvex profile at zero lift; sweepback andie, 4.5°; thickness ratio in flight
diretion, 0.10 . direction, 0.10 .

(b) With tip effect. Aspect ratio, 1.86; Mach number, 1.10.

Fig. 3
NACA RM No. L6K29

Fiqure 3.- Typical variations with aspect ratio of the increments in wing wave-drag coefficient caused by wing tips at different Mach numbers. Biconvex profile at zerolift; sweepback andle, 45°; thickness ratio in flight direction, 0.10 .

$$
\begin{aligned}
& \Lambda=52.5^{\circ} \\
& \frac{2}{t}=50 \\
& \frac{2}{t}=25
\end{aligned}
$$

$*$

$$
\begin{aligned}
& 75^{\circ} \\
& \frac{2}{t}=50
\end{aligned}
$$

Variation with Mach number of wing wave-draq coefficient for different profile at zero. lift;
-

