1,230 research outputs found

    Bis(aryl) Tetrasulfides as Cathode Materials for Rechargeable Lithium Batteries

    Get PDF
    An organotetrasulfide consists of a linear chain of four sulfur atoms that could accept up to 6 e− in reduction reactions, thus providing a promising high-capacity electrode material. Herein, we study three bis(aryl) tetrasulfides as cathode materials in lithium batteries. Each tetrasulfide exhibits two major voltage regions in the discharge. The high voltage slope region is governed by the formation of persulfides and thiolates, and the low voltage plateau region is due to the formation of Li2S2/Li2S. Based on theoretical calculations and spectroscopic analysis, three reduction reaction processes are revealed, and the discharge products are identified. Lithium half cells with tetrasulfide catholytes deliver high specific capacities over 200 cycles. The effects of the functional groups on the electrochemical characteristics of tetrasulfides are investigated, which provides guidance for developing optimum aryl polysulfides as cathode materials for high energy lithium batteries

    Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis

    Full text link

    Photoelasticity of crystalline and amorphous silica from first principles

    Full text link
    Based on density-functional perturbation theory we have computed from first principles the photoelastic tensor of few crystalline phases of silica at normal conditions and high pressure (quartz, α\alpha-cristobalite, β\beta-cristobalite) and of models of amorphous silica (containig up to 162 atoms), obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The computational framework has also been checked on the photoelastic tensor of crystalline silicon and MgO as prototypes of covalent and ionic systems. The agreement with available experimental data is good. A phenomenological model suitable to describe the photoelastic properties of different silica polymorphs is devised by fitting on the ab-initio data.Comment: ten figure

    Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly

    Get PDF
    The chiral supramolecular catalyst Ga{sub 4}L{sub 6} [L = 1,5-bis(2,3-dihydroxybenzoylamino)naphthalene] is a molecular tetrahedron that catalyzes the 3-aza-Cope rearrangement of allyl enammonium cations. This catalysis is accomplished by preorganizing the substrate in a reactive conformation within the host. This work demonstrates that through the use of enantiopure assembly, its chiral cavity is capable of catalyzing the 3-aza-Cope rearrangement enantioselectively, with yields of 21-74% and enantiomeric excesses from 6 to 64% at 50 C. At lower temperatures, the enantioselectivity improved, reaching 78% ee at 5 C. This is the highest enantioselectivity to date induced by the chiral cavity of a supramolecular assembly

    Simultaneously Bound Guests and Chiral Recognition: A Chiral Self-Assembled Supramolecular Host Encapsulates Hydrophobic Guests

    Get PDF
    Driven by the hydrophobic effect, a water-soluble, chiral, self-assembled supramolecular host is able to encapsulate hydrophobic organic guests in aqueous solution. Small aromatics can be encapsulated in the supramolecular assembly, and the simultaneous encapsulation of multiple guests is observed in many cases. The molecular host assembly is able to recognize different substitutional isomers of disubstituted benzenes with ortho substitution leading to the encapsulation of two guests, but meta or para substitution leading to the encapsulation of only one guest. The scope of hydrophobic guest encapsulation is further explored with chiral natural product guests. Upon encapsulation of chiral guests into the racemic host, diastereomeric host-guest complexes are formed with observed diastereoselectivities of up to 78:22 in the case of fenchone

    Seminaphthofluorescein-Based Fluorescent Probes for Imaging Nitric Oxide in Live Cells

    Get PDF
    Fluorescent turn-on probes for nitric oxide based on seminaphthofluorescein scaffolds were prepared and spectroscopically characterized. The Cu(II) complexes of these fluorescent probes react with NO under anaerobic conditions to yield a 20–45-fold increase in integrated emission. The seminaphthofluorescein-based probes emit at longer wavelengths than the parent FL1 and FL2 fluorescein-based generations of NO probes, maintaining emission maxima between 550 and 625 nm. The emission profiles depend on the excitation wavelength; maximum fluorescence turn-on is achieved at excitations between 535 and 575 nm. The probes are highly selective for NO over other biologically relevant reactive nitrogen and oxygen species including NO3–, NO2–, HNO, ONOO–, NO2, OCl–, and H2O2. The seminaphthofluorescein-based probes can be used to visualize endogenously produced NO in live cells, as demonstrated using Raw 264.7 macrophages.National Science Foundation (U.S.) (CHE-0611944)National Institutes of Health (U.S.) (K99GM092970

    Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage.

    Get PDF
    The hollow cavities of coordination cages can provide an environment for enzyme-like catalytic reactions of small-molecule guests. Here, we report a new example (catalysis of the Kemp elimination reaction of benzisoxazole with hydroxide to form 2-cyanophenolate) in the cavity of a water-soluble M8L12 coordination cage, with two features of particular interest. First, the rate enhancement is among the largest observed to date: at pD 8.5, the value of kcat/kuncat is 2 × 10(5), due to the accumulation of a high concentration of partially desolvated hydroxide ions around the bound guest arising from ion-pairing with the 16+ cage. Second, the catalysis is based on two orthogonal interactions: (1) hydrophobic binding of benzisoxazole in the cavity and (2) polar binding of hydroxide ions to sites on the cage surface, both of which were established by competition experiments
    • …
    corecore