239 research outputs found

    Using formative assessment to influence self- and co-regulated learning: the role of evaluative judgement

    Get PDF
    Recently, the concept of evaluative judgement has gained attention as a pedagogical approach to classroom formative assessment practices. Evaluative judgement is the capacity to be able to judge the work of oneself and that of others, which implies developing knowledge about one’s own assessment capability. A focus on evaluative judgement helps us to better understand what is the influence of assessment practices in the regulation of learning. In this paper, we link evaluative judgement to two self-regulated learning models (Zimmerman and Winne) and present a model on the effects on co-regulation of learning. The models help us to understand how students can be self-regulated through developing their evaluative judgement. The co-regulation model visualises how the learner can become more strategic in this process through teacher and peer assessment in which assessment knowledge and regulation strategies are shared with the learner. The connections we make here are crucial to strengthening our understanding of the influence of assessment practices on students’ learnin

    Reframing assessment research: through a practice perspective

    Get PDF
    Assessment as a field of investigation has been influenced by a limited number of perspectives. These have focused assessment research in particular ways that have emphasised measurement, or student learning or institutional policies. The aim of this paper is to view the phenomenon of assessment from a practice perspective drawing upon ideas from practice theory. Such a view places assessment practices as central. This perspective is illustrated using data from an empirical study of assessment decision-making and uses as an exemplar the identified practice of ‘bringing a new assessment task into being’. It is suggested that a practice perspective can position assessment as integral to curriculum practices and end separations of assessment from teaching and learning. It enables research on assessment to de-centre measurement and take account of the wider range of people, phenomena and things that constitute it

    Autonomy and Its Role in English Language Learning: Practice and Research

    Get PDF
    This chapter picks up discussion in the previous edition of this handbook of how the concept of autonomy has influenced language education and applied linguistics in recent years. It begins by discussing the philosophical and practical origins of learner autonomy in language education and particularly in English language teaching and how these have developed over the last 10 years. Key practical initiatives and research findings are reviewed to illuminate how autonomy has been interpreted in relation to learners, teachers, and the learning situation; how it has been linked or contrasted with other constructs; and how fostering autonomy has been seen as a part of pedagogy. Recent developments from the earlier edition are discussed regarding metacognition and, in particular, various contextual dimensions of learner autonomy. Other emerging topics are also reviewed, including learner autonomy in the world of digital/social media, learner autonomy in curriculum design and published materials, and the relation of learner autonomy to plurilingual perspectives. The chapter discusses issues in each of these areas, potential strategies for developing autonomy and effective learning, and possible future directions for research and practice

    Local deformation in a hydrogel induced by an external magnetic field

    Full text link
    The aim of this study is to prove the feasibility of a system able to apply local mechanical loading on cells seeded in a hydrogel for tissue engineering applications. This experimental study is based on a previously developed artificial cartilage model with different concentrations of poly(vinyl alcohol) (PVA) that simulates the cartilage extracellular matrix (ECM). Poly(l-lactic acid) (PLLA) microspheres with dispersed magnetic nanoparticles (MNPs) were produced with an emulsion method. These microspheres were embedded in aqueous PVA solutions with varying concentration to resemble increased viscosity of growing tissue during regeneration. The ability to induce a local deformation in the ECM was assessed by applying a steady or an oscillatory magnetic field gradient to different PVA solutions containing the magnetic microparticles, similarly as in ferrogels. PLLA microparticle motion was recorded, and the images were analyzed. Besides, PVA gels and PLLA microparticles were introduced into the pores of a polycaprolactone scaffold, and the microparticle distribution and the mechanical properties of the construct were evaluated. The results of this experimental model show that the dispersion of PLLA microparticles containing MNPs, together with cells in a supporting gel, will allow applying local mechanical stimuli to cells during tissue regeneration. This local stimulation can have a positive effect on the differentiation of seeded cells and improve tissue regeneration.The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the MAT2013-46467-C4-1-R project, including the Feder funds. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank "Servicio de Microscopia Electronica" of Universitat Politecnica de Valencia for their invaluable help. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.Vikingsson, L.; Vinals Guitart, Á.; Valera MartĂ­nez, A.; Riera Guasp, J.; Vidaurre Garayo, AJ.; Gallego Ferrer, G.; GĂłmez Ribelles, JL. (2016). Local deformation in a hydrogel induced by an external magnetic field. Journal of Materials Science. 51(22):9979-9990. https://doi.org/10.1007/s10853-016-0226-8S997999905122Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28:385–397Gillard GC, Reilly HC, Bell-Booth PG, Flint MH (1979) The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res 7:37–46Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111:573–583Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995) Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol 73:349–365Appelman T, Mizrahi J, Elisseeff J, Seliktar D (2011) The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials 32:1508–1516Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97Mow VC, Huiskes R (2005) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams and Wilkins, PhiladelphiaBrady MA, Waldman SD, Ethier CR (2015) The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: cellular response. Tissue Eng Part B Rev 21:1–19Valhmu WB, Stazzone EJ, Bachrach NM, Saed-Nejad F, Fischer SG, Mow VC, Ratcliffe A (1998) Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch Biochem Biophys 353:29–36Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Ann Rev Physiol 59:575–599Khan S, Sheetz MP (1997) Force effects on biochemical kinetics. Ann Rev Biochem 66:785–805Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method. Exp Cell Res 1:37–80Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol 101:130–140Valberg PA, Feldman HA (1987) Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys J 52:551–561Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol 73:327–335Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157–164Bausch AR, Hellerer U, Essler M, Aepfelbacher M, Sackmann E (2001) Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study. Biophys J 80:2649–2657Li L, Yang G, Li J, Ding S, Zhou S (2014) Cell behaviors on magnetic electrospun poly-d, l-lactide nano fibers. Mater Sci Eng, C 34:252–261Fuhrer R, Hofmann S, Hild N, Vetsch JR, Herrmann IK, Grass RN, Stark WJ (2013) Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 8:e81362Cezar CA, Roche ET, Vandenburgh HH, Duda GN, Walsh CJ, Mooney DJ (2016) Biologic-free mechanically induced muscle regeneration. Proc Natl Acad Sci USA 113:1534–1539Vikingsson L, Gallego Ferrer G, GĂłmez-Tejedor JA, GĂłmez Ribelles JL (2014) An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage. J Mech Behav Biomed Mater 32:125–131Vikingsson L, Gomez-Tejedor JA, Gallego Ferrer G, Gomez Ribelles JL (2015) An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. J Biomech 48:1310–1317Vikingsson L, Claessens B, GĂłmez-Tejedor JA, Gallego Ferrer G, GĂłmez Ribelles JL (2015) Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. J Mech Behav Biomed Mater 48:60–69Li F, Su YL, Shi DF, Wang CT (2010) Comparison of human articular cartilage and polyvinyl alcohol hydrogel as artificial cartilage in microstructure analysis and unconfined compression. Adv Mater Res Trans Tech Publ 87:188–193Grant C, Twigg P, Egan A, Moody A, Eagland D, Crowther N, Britland S (2006) Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage. Biotechnol Prog 22:1400–1406Weeber R, Kantorovich S, Holm C (2015) Ferrogels cross-linked by magnetic nanoparticles—Deformation mechanisms in two and three dimensions studied by means of computer simulations. J Magn Magn Mater 383:262–266Lebourg M, Suay AntĂłn J, GĂłmez Ribelles JL (2008) Porous membranes of PLLA–PCL blend for tissue engineering applications. Eur Polym J 44:2207–2218SantamarĂ­a VA, Deplaine H, MariggiĂł D, Villanueva-Molines AR, GarcĂ­a-Aznar JM, GĂłmez Ribelles JL, DoblarĂ© M, Gallego Ferrer G, Ochoa I (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly (l-lactic acid) scaffolds. J Non Cryst Solids 358:3141–3149Panadero JA, Vikingsson L, Gomez Ribelles JL, Lanceros-Mendez S, Sencadas V (2015) In vitro mechanical fatigue behaviour of poly-Δ-caprolactone macroporous scaffolds for cartilage tissue engineering. Influence of pore filling by a poly(vinyl alcohol) gel. J Biomed Mater Res Part B Appl Biomater 103:1037–1043Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504Mano JF, GĂłmez Ribelles JL, Alves NM, SalmerĂłn Sanchez M (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, Reiser M (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295Garlotta D (2001) A literature review of poly(lactic acid). J Polym Eng 9:63–84Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci Polym Phys 17:1097–1162HernĂĄndez F, Molina Mateo J, Romero Colomer F, SalmerĂłn SĂĄnchez M, GĂłmez Ribelles JL, Mano J (2005) Influence of low-temperature nucleation on the crystallization process of poly(l-lactide). Biomacromolecules 6:3291–3299Wang Y, GĂłmez Ribelles JL, SalmerĂłn SĂĄnchez M, Mano JF (2005) Morphological contribution to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718SalmerĂłn SĂĄnchez M, Vincent BM, Vanden Poel G, GĂłmez-Ribelles JL (2007) Effect of the cooling rate on the nucleation kinetics of poly(l-lactic acid) and its influence on morphology. Macromolecules 40:7989–7997Nobuyuki O (1975) A threshold selection method from gray-level histograms. Automatica 11:23–2

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF

    Publisher Correction: Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF

    Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF
    • 

    corecore