110 research outputs found

    THE IMPLANT TREATMENT OF TWO PATIENTS SUFFERING FROM SJÖGREN’S SYNDROME WITH MULTIFACTORIAL REGENERATIVE PROTOCOL

    Get PDF
    The purpose of the work is to show that it is possible to rehabilitate with Multifatorial Regenerative Protocol (MFRP) also the patients with diseases considered to be absolute contraindications to the implant rehabilitation. For the rehabilitation it has been used the PBR rehabilitation technique, that allows to insert prosthetic roots not excessively traumatizing the bone tissue and to avoid the use of high speed rotary burs. Despite the disease and the poor bone quality, it has been possible to obtain the osteo-connection only in 45 days. Using the MFRP implants, it is possible to rehabilitate with a high percentage of success also patients with poor bone quality and density

    Nuclear Cusps and Cores in Early-type Galaxies As Relics of Binary Black Hole Mergers

    Get PDF
    We present an analysis of the central cusp slopes and core parameters of early-type galaxies using a large database of surface brightness profiles obtained from Hubble Space Telescope observations. We examine the relation between the central cusp slopes, core parameters, and black hole masses in early-type galaxies, in light of two models that attempt to explain the formation of cores and density cusps via the dynamical influence of black holes. Contrary to the expectations from adiabatic-growth models, we find that the cusp slopes do not steepen with increasing black hole mass fraction. Moreover, a comparison of kinematic black hole mass measurements with the masses predicted by the adiabatic models shows that they overpredict the masses by a factor of approximately 3. Simulations involving binary black hole mergers predict that both the size of the core and the central mass deficit correlate with the final black hole mass. These relations are qualitatively supported by the present data.Comment: To appear in ApJ. 8 page

    Heterogeneity of neuroinflammatory responses in amyotrophic lateral sclerosis: A challenge or an opportunity?

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a complex pathology: (i) the neurodegeneration is chronic and progressive; it starts focally in specific central nervous system (CNS) areas and spreads to different districts; (ii) multiple cell types further than motor neurons (i.e., glial/immune system cells) are actively involved in the disease; (iii) both neurosupportive and neurotoxic neuroinflammatory responses were identified. Microglia cells (a key player of neuroinflammation in the CNS) attracted great interest as potential target cell population that could be modulated to counteract disease progression, at least in preclinical ALS models. However, the heterogeneous/multifaceted microglia cell responses occurring in different CNS districts during the disease represent a hurdle for clinical translation of single-drug therapies. To address this issue, over the past ten years, several studies attempted to dissect the complexity of microglia responses in ALS. In this review, we shall summarize these results highlighting how the heterogeneous signature displayed by ALS microglia reflects not only the extent of neuronal demise in different regions of the CNS, but also variable engagement in the attempts to cope with the neuronal damage. We shall discuss novel avenues opened by the advent of single-cell and spatial transcriptomics technologies, underlining the potential for discovery of novel therapeutic targets, as well as more specific diagnostic/prognostic not-invasive markers of neuroinflammation

    A novel ionic exchange membrane crystallizer to recover magnesium hydroxide from seawater and industrial brines

    Get PDF
    A novel technology, the ion exchange membrane crystallizer (CrIEM), that combines reactive and membrane crystallization, was investigated in order to recover high purity magnesium hydroxide from multi-component artificial and natural solutions. In particular, in a CrIEM reactor, the presence of an anion exchange membrane (AEM), which separates two-compartment containing a saline solution and an alkaline solution, allows the passage of hydroxyl ions from the alkaline to the saline solution compartment, where crystallization of magnesium hydroxide occurs, yet avoiding a direct mixing between the solutions feeding the reactor. This enables the use of low-cost reactants (e.g., Ca(OH)2) without the risk of co-precipitation of by-products and contamination of the final crystals. An experimental campaign was carried out treating two types of feed solution, namely: (1) a waste industrial brine from the Boles\u142aw \u15amia\u142y coal mine in \u141aziska G\uf3rne (Poland) and (2) Mediterranean seawater, collected from the North Sicilian coast (Italy). The CrIEM was tested in a feed and bleed modality in order to operate in a continuous mode. The Mg2+ concentration in the feed solutions ranges from 0.7 to 3.2 g/L. Magnesium recovery efficiencies from 89 up to 100% were reached, while magnesium hydroxide purity between 94% and 98.8% was obtained

    Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines

    Get PDF
    This work reports experimental data collected for the first time on a full-scale RED pilot plant operated with natural streams in a real environment. The plant - located in the South of Italy - represents the final accomplishment of the REAPower project (www.reapower.eu). A RED unit equipped with almost 50m2 of IEMs (125 cell pairs, 44x44cm2) was tested, using both artificial and natural feed solutions, these latter corresponding to brackish water (≈0.03M NaClequivalent) and saturated brine (4-5M NaClequivalent). A power output up to around 40W (i.e. 1.6W/m2 of cell pair) was reached using natural solutions, while an increase of 60% was observed when testing the system with artificial NaCl solutions, reaching up to ≈65W (2.7W/m2 of cell pair). The unit performance was monitored over a period of five months under, and no significant performance losses were observed due to scaling, fouling or ageing phenomena. Such results are of paramount importance to assess the potential of the technology, towards the successful development on the industrial scale. A scale-up of the pilot plant is planned through the installation of two additional RED modules, with an expected power output in the order of 1 kW

    Membrane distillation: Solar and waste heat driven demonstration plants for desalination

    Get PDF
    The development of small to medium size, autonomous and robust desalination units is needed to establish an independent water supply in remote areas. This is the motivation for research on alternative desalination processes. Membrane distillation (MD) seems to meet the specific requirements very well. This work is focused on experimental studies on full scale demonstration systems, utilizing a parallel multi MD-module setup. Three different plant concepts are introduced, one of them is waste heat driven and two of them are powered by solar thermal collectors. Design parameters and system design are presented. After the analysis of plant operation a comparison among the plants as well as a comparison with laboratory experiments is carried out and discussed. Impact of different feed flow rates, salinities, operating hours and process temperatures are taken into consideration and put into relation. GOR values and specific thermal heat demand are derived and compared. Energy balances of all three plants are given, uncovering heat losses and identifying room for improvemen

    Computational Modeling of Magnesium Hydroxide Precipitation and Kinetics Parameters Identification

    Get PDF
    Magnesium is a critical raw material and its recovery as Mg(OH)2 from saltwork brines can be realized via precipitation. The effective design, optimization, and scale-up of such a process require the development of a computational model accounting for the effect of fluid dynamics, homogeneous and heterogeneous nucleation, molecular growth, and aggregation. The unknown kinetics parameters are inferred and validated in this work by using experimental data produced with a T2mm-mixer and a T3mm-mixer, guaranteeing fast and efficient mixing. The flow field in the T-mixers is fully characterized by using the k-ϵ turbulence model implemented in the computational fluid dynamics (CFD) code OpenFOAM. The model is based on a simplified plug flow reactor model, instructed by detailed CFD simulations. It incorporates Bromley’s activity coefficient correction and a micro-mixing model for the calculation of the supersaturation ratio. The population balance equation is solved by exploiting the quadrature method of moments, and mass balances are used for updating the reactive ions concentrations, accounting for the precipitated solid. To avoid unphysical results, global constrained optimization is used for kinetics parameters identification, exploiting experimentally measured particle size distribution (PSD). The inferred kinetics set is validated by comparing PSDs at different operative conditions both in the T2mm-mixer and the T3mm-mixer. The developed computational model, including the kinetics parameters estimated for the first time in this work, will be used for the design of a prototype for the industrial precipitation of Mg(OH)2 from saltwork brines in an industrial environment

    A pilot-plant for the selective recovery of magnesium and calcium from waste brines

    Get PDF
    The problem of brines disposal has raised great interest towards new strategies for their valorisation through the recovery of minerals or energy. As an example, the spent brine from ion exchange resins regeneration is often discharged into rivers or lakes, thus impacting on the process sustainability. However, such brines can be effectively reconcentrated, after removal of bivalent cations, and reused for the resins regeneration. This work focuses on developing and testing a pilot plant for selective recovery of magnesium and calcium from spent brines exploiting a novel proprietary crystallization unit. This is part of a larger treatment chain for the complete regeneration of the brine, developed within the EU-funded ZERO BRINE project. The pilot crystallizer was tested with the retentate of the nanofiltration unit processing the spent brine from the industrial water production plant of Evides Industriewater B.V. (Rotterdam, The Netherlands). Magnesium and calcium hydroxide were selectively precipitated by adding alkaline solution in two consecutive steps and controlling reaction pH. Performance was assessed in terms of recovery efficiency and purity of produced crystals, observing in most investigated cases a recovery of about 100% and 97% and a purity above 90% and 96%, for magnesium and calcium hydroxide, respectively

    Multi-scale modelling of an electrodialysis with bipolar membranes pilot plant and economic evaluation of its potential

    Get PDF
    Sodium hydroxide and hydrochloric acid are widely used chemicals in different industrial sectors. To minimize costs and risks associated with transportation, handling and storage, these hazardous chemicals can be produced in situ employing electrodialysis with bipolar membranes (EDBM). This work presents a multi-scale model capable of simulating large scale EDBM units with complex stack configuration (i.e., internal staging) that can be used to design and optimize the process. The model was validated in two different process configurations using experimental results obtained from an EDBM pilot plant. Discrepancies between model and experimental results in the range of 2–11 % were obtained. The validated model was used to conduct a techno-economic evaluation adopting the feed and bleed configuration. Results show that current efficiency increases as the current density rises. At 600 A m−2, values of current efficiency between 72 % and 96 % were found for sodium hydroxide concentration in the range of 0.5–1 mol L−1. The levelized cost of sodium hydroxide (LCoNaOH) was evaluated, in the same range of concentrations, demonstrating that values between 280 and 370 € ton−1 can be obtained, fixing the electricity prince (0.1 kWh kg−1) and the triplet specific cost (600 USm−2).Moreover,assumingareducedcostofelectricityandtripletto0.05kWhkg−1and300US m−2). Moreover, assuming a reduced cost of electricity and triplet to 0.05 kWh kg−1 and 300 US m−2, respectively, an absolute minimum of 140 € ton−1 was found for the target 0.5 mol L−1. A double stage EDBM configuration was simulated to show the scale-up potentials of the multi-scale model. A reduction in the LcoNaOH of 10 % was obtained for a target concentration of 1 mol L−1. These results prove the attractiveness of the EDBM technology for producing in situ chemicals

    Analysis of particles size distributions in Mg(OH)2 precipitation from highly concentrated MgCl2 solutions

    Get PDF
    Magnesium is a raw material of great importance, which attracted increasing interest in the last years. A promising route is to recover magnesium in the form of Magnesium Hydroxide via precipitation from highly concentrated Mg2+ resources, e.g. industrial or natural brines and bitterns. Several production methods and characterization procedures have been presented in the literature reporting a broad variety of Mg(OH)2 particle sizes. In the present work, a detailed experimental investigation is aiming to shed light on the characteristics of produced Mg(OH)2 particles and their dependence upon the reacting conditions. To this purpose, two T-shaped mixers were employed to tune and control the degree of homogenization of reactants. Particles were analysed by laser static light scattering with and without an anti-agglomerant treatment based on ultrasounds and addition of a dispersant. Zeta potential measurements were also carried out to further assess Mg(OH)2 suspension stability
    • …
    corecore