1,516 research outputs found
Kepler Transit Depths Contaminated by a Phantom Star
We present ground-based observations from the Discovery Channel Telescope
(DCT) of three transits of Kepler-445c---a supposed super-Earth exoplanet with
properties resembling GJ 1214b---and demonstrate that the transit depth is
approximately 50 percent shallower than the depth previously inferred from
Kepler Spacecraft data. The resulting decrease in planetary radius
significantly alters the interpretation of the exoplanet's bulk composition.
Despite the faintness of the M4 dwarf host star, our ground-based photometry
clearly recovers each transit and achieves repeatable 1-sigma precision of
approximately 0.2 percent (2 millimags). The transit parameters estimated from
the DCT data are discrepant with those inferred from the Kepler data to at
least 17-sigma confidence. This inconsistency is due to a subtle miscalculation
of the stellar crowding metric during the Kepler pre-search data conditioning
(PDC). The crowding metric, or CROWDSAP, is contaminated by a non-existent
"phantom star" originating in the USNO-B1 catalog and inherited by the Kepler
Input Catalog (KIC). Phantom stars in the KIC are likely rare, but they have
the potential to affect statistical studies of Kepler targets that use the PDC
transit depths for a large number of exoplanets where individual follow-up
observation of each is not possible. The miscalculation of Kepler-445c's
transit depth emphasizes the importance of stellar crowding in the Kepler data,
and provides a cautionary tale for the analysis of data from the Transiting
Exoplanet Survey Satellite (TESS), which will have even larger pixels than
Kepler.Comment: 11 pages, 10 figures, 5 tables. Accepted for publication in AJ.
Transit light curves will be available from AJ as Db
Oscillators and relaxation phenomena in Pleistocene climate theory
Ice sheets appeared in the northern hemisphere around 3 million years ago and
glacial-interglacial cycles have paced Earth's climate since then. Superimposed
on these long glacial cycles comes an intricate pattern of millennial and
sub-millennial variability, including Dansgaard-Oeschger and Heinrich events.
There are numerous theories about theses oscillations. Here, we review a number
of them in order to draw a parallel between climatic concepts and dynamical
system concepts, including, in particular, the relaxation oscillator,
excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all
theories of ice ages reviewed here feature a phenomenon of synchronisation
between internal climate dynamics and the astronomical forcing. However, these
theories differ in their bifurcation structure and this has an effect on the
way the ice age phenomenon could grow 3 million years ago. All theories on
rapid events reviewed here rely on the concept of a limit cycle in the ocean
circulation, which may be excited by changes in the surface freshwater surface
balance. The article also reviews basic effects of stochastic fluctuations on
these models, including the phenomenon of phase dispersion, shortening of the
limit cycle and stochastic resonance. It concludes with a more personal
statement about the potential for inference with simple stochastic dynamical
systems in palaeoclimate science.
Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages,
Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of
the Royal Society (Series A, Physical Mathematical and Engineering Sciences),
as a contribution to the Proceedings of the workshop on Stochastic Methods in
Climate Modelling, Newton Institute (23-27 August). Philosophical
Transactions of the Royal Society (Series A, Physical Mathematical and
Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on
request to author and on http://www.uclouvain.be/ito
An eco-evolutionary feedback loop between population dynamics and fighter expression affects the evolution of alternative reproductive tactics
1. Surprisingly, little is known about how eco‐evolutionary feedback loops affect trait dynamics within a single population. Polymorphisms of discrete alternative phenotypes present ideal test beds to investigate this, as the alternative phenotypes typically exhibit contrasting demographic rates mediated through frequency or density dependence, and are thus differentially affected by selection. 2. Alternative reproductive tactics (ARTs), like male fighters and sneakers, are an extreme form of discrete phenotype expression and occur across many taxa. Fighters possess weapons for male–male competition over access to mates, whereas sneakers are defenceless but adopt tactics like female‐mimicking. Because fighters in some species mortally injure conspecifics, this raises the question whether fighter expression can feed back to affect population size and structure, thereby altering the selection gradient and evolutionary dynamics of ART expression in an eco‐evolutionary feedback loop. 3. Here, we investigated how the eco‐evolutionary feedback loop between fighter expression and population size and structure affects the evolution and maintenance of ARTs. We introduced intraspecific killing by fighters in a two‐sex, two‐ART population model parameterized for the male dimorphic bulb mite (Rhizoglyphus robini) that includes life‐history differences between the ARTs and a mating‐probability matrix analogous to the classic hawk–dove game. 4. Using adaptive dynamics, we found that the intraspecific killing by fighters can extend the range of life‐history parameter values under which ARTs evolve, because fighters that kill other fighters decrease fighter fitness. This effect can be nullified when benefits from killing are incorporated, like increased reproduction through increased energy uptake. 5. The eco‐evolutionary feedback effects found here for a dimorphic trait likely also occur in other fitness‐related traits, such as behavioural syndromes, parental care and niche construction traits. Current theoretical advances to model eco‐evolutionary processes, and empirical steps towards unravelling the underlying drivers, pave the way for understanding how selection affects trait evolution in an eco‐evolutionary feedback loop
High Resolution, Differential, Near-infrared Transmission Spectroscopy of GJ 1214b
The nearby star GJ 1214 hosts a planet intermediate in radius and mass
between Earth and Neptune, resulting in some uncertainty as to its nature. We
have observed this planet, GJ 1214b, during transit with the high-resolution,
near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to
characterize the planet's atmosphere. By cross-correlating the spectral changes
through transit with a suite of theoretical atmosphere models, we search for
variations associated with absorption in the planet atmosphere. Our
observations are sufficient to rule out tested model atmospheres with
wavelength-dependent transit depth variations >5e-4 over the wavelength range
2.1 - 2.4 micron. Our sensitivity is limited by variable slit loss and telluric
transmission effects.
We find no positive signatures but successfully rule out a number of
plausible atmospheric models, including the default assumption of a gaseous,
H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made
consistent if the absorption due to methane is reduced. Clouds can also render
such an atmosphere consistent with our observations, but only if they lie
higher in the atmosphere than indicated by recent optical and infrared
measurements.
When taken in concert with constraints from other groups, our results support
a consensus model in which the atmosphere of GJ 1214b contains significant H
and He, but where methane is depleted. If this depletion is the result of
photochemical processes, it may also produce a haze that suppresses spectral
features in the optical.Comment: 32 pages, 15 figures, preprint, accepted to ApJ, responded to
referee's comments. Comments welcom
First Assessment of Mountains on Northwestern Ellesmere Island, Nunavut, as Potential Astronomical Observing Sites
Ellesmere Island, at the most northerly tip of Canada, possesses the highest
mountain peaks within 10 degrees of the pole. The highest is 2616 m, with many
summits over 1000 m, high enough to place them above a stable low-elevation
thermal inversion that persists through winter darkness. Our group has studied
four mountains along the northwestern coast which have the additional benefit
of smooth onshore airflow from the ice-locked Arctic Ocean. We deployed small
robotic site testing stations at three sites, the highest of which is over 1600
m and within 8 degrees of the pole. Basic weather and sky clarity data for over
three years beginning in 2006 are presented here, and compared with available
nearby sea-level data and one manned mid-elevation site. Our results point to
coastal mountain sites experiencing good weather: low median wind speed, high
clear-sky fraction and the expectation of excellent seeing. Some practical
aspects of access to these remote locations and operation and maintenance of
equipment there are also discussed.Comment: 21 pages, 2 tables, 15 figures; accepted for publication in PAS
Thermal Phase Variations of WASP-12b: Defying Predictions
[Abridged] We report Warm Spitzer full-orbit phase observations of WASP-12b
at 3.6 and 4.5 micron. We are able to measure the transit depths, eclipse
depths, thermal and ellipsoidal phase variations at both wavelengths. The large
amplitude phase variations, combined with the planet's previously-measured
day-side spectral energy distribution, is indicative of non-zero Bond albedo
and very poor day-night heat redistribution. The transit depths in the
mid-infrared indicate that the atmospheric opacity is greater at 3.6 than at
4.5 micron, in disagreement with model predictions, irrespective of C/O ratio.
The secondary eclipse depths are consistent with previous studies. We do not
detect ellipsoidal variations at 3.6 micron, but our parameter uncertainties
-estimated via prayer-bead Monte Carlo- keep this non-detection consistent with
model predictions. At 4.5 micron, on the other hand, we detect ellipsoidal
variations that are much stronger than predicted. If interpreted as a geometric
effect due to the planet's elongated shape, these variations imply a 3:2 ratio
for the planet's longest:shortest axes and a relatively bright day-night
terminator. If we instead presume that the 4.5 micron ellipsoidal variations
are due to uncorrected systematic noise and we fix the amplitude of the
variations to zero, the best fit 4.5 micron transit depth becomes commensurate
with the 3.6 micron depth, within the uncertainties. The relative transit
depths are then consistent with a Solar composition and short scale height at
the terminator. Assuming zero ellipsoidal variations also yields a much deeper
4.5 micron eclipse depth, consistent with a Solar composition and modest
temperature inversion. We suggest future observations that could distinguish
between these two scenarios.Comment: 19 pages, 10 figures, ApJ in press. Improved discussion of gravity
brightenin
Influence of Containment on the Growth of Silicon-Germanium (ICESAGE): A Materials Science ISS Investigation
A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processinginduced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction. The plans for the flight experiments will be described
Influence of Containment on the Growth of Silicon-Germanium (ICESAGE): A Materials Science Investigation
A series of Ge Si crystal growth experiments are planned to be conducted in the Low 1-x x Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction
- …