902 research outputs found
Craig's XY distribution and the statistics of Lagrangian power in two-dimensional turbulence
We examine the probability distribution function (PDF) of the energy injection rate (power) in numerical simulations of stationary two-dimensional (2D) turbulence in the Lagrangian frame. The simulation is designed to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian. On the other hand, the measured PDF of injected power is very sharply peaked at zero, suggestive of a singularity there, with tails which are exponential but asymmetric. Large positive fluctuations are more probable than large negative fluctuations. It is this asymmetry of the tails which leads to a net positive mean value for the energy input despite the most probable value being zero. The main features of the power distribution are well described by Craig's XY distribution for the PDF of the product of two correlated normal variables. We show that the power distribution should exhibit a logarithmic singularity at zero and decay exponentially for large absolute values of the power. We calculate the asymptotic behavior and express the asymmetry of the tails in terms of the correlation coefficient of the force and velocity. We compare the measured PDFs with the theoretical calculations and briefly discuss how the power PDF might change with other forcing mechanisms
Grid-scale Fluctuations and Forecast Error in Wind Power
The fluctuations in wind power entering an electrical grid (Irish grid) were
analyzed and found to exhibit correlated fluctuations with a self-similar
structure, a signature of large-scale correlations in atmospheric turbulence.
The statistical structure of temporal correlations for fluctuations in
generated and forecast time series was used to quantify two types of forecast
error: a timescale error () that quantifies the deviations between
the high frequency components of the forecast and the generated time series,
and a scaling error () that quantifies the degree to which the
models fail to predict temporal correlations in the fluctuations of the
generated power. With no knowledge of the forecast models, we
suggest a simple memory kernel that reduces both the timescale error
() and the scaling error ()
Growing condensate in two-dimensional turbulence
We report a numerical study, supplemented by phenomenological explanations,
of ``energy condensation'' in forced 2D turbulence in a biperiodic box.
Condensation is a finite size effect which occurs after the standard inverse
cascade reaches the size of the system. It leads to emergence of a coherent
vortex dipole. We show that the time growth of the dipole is self-similar, and
it contains most of the injected energy, thus resulting in an energy spectrum
which is markedly steeper than the standard one. Once the coherent
component is subtracted, however, the remaining fluctuations have a spectrum
close to . The fluctuations decay slowly as the coherent part grows.Comment: 4 pages, 4 figures. This version includes some additional
phenomenological explanations of the results, additional references and
improved figure
BATSE Observations of Gamma-Ray Burst Tails
I discuss in this paper the phenomenon of post-burst emission in BATSE
gamma-ray bursts at energies traditionally associated with prompt emission. By
summing the background-subtracted signals from hundreds of bursts, I find that
tails out to hundreds of seconds after the trigger may be a common feature of
long events (duration greater than 2s), and perhaps of the shorter bursts at a
lower and shorter-lived level. The tail component appears independent of both
the duration (within the long GRB sample) and brightness of the prompt burst
emission, and may be softer. Some individual bursts have visible tails at
gamma-ray energies and the spectrum in at least a few cases is different from
that of the prompt emission.Comment: 33 Pages from LaTex including 7 figures, with aastex. To appear in
Astrophysical Journa
The effect of loading on disturbance sounds of the Atlantic croaker Micropogonius undulatus: Air versus water
Physiological work on fish sound production may require exposure of the swimbladder to air, which will change its loading (radiation mass and resistance) and could affect parameters of emitted sounds. This issue was examined in Atlantic croaker Micropogonius chromis by recording sounds from the same individuals in air and water. Although sonograms appear relatively similar in both cases, pulse duration is longer because of decreased damping, and sharpness of tuning (Q factor) is higher in water. However, pulse repetition rate and dominant frequency are unaffected. With appropriate caution it is suggested that sounds recorded in air can provide a useful tool in understanding the function of various swimbladder adaptations and provide reasonable approximation of natural sounds. Further, they provide an avenue for experimentally manipulating the sonic system, which can reveal details of its function not available from intact fish underwater
GBM Observations of V404 Cyg During its 2015 Outburst
V404 Cygni was discovered in 1989 by the X-ray satellite during its
only previously observed X-ray outburst and soon after confirmed as a black
hole binary. On June 15, 2015, the Gamma Ray Burst Monitor (GBM) triggered on a
new outburst of V404 Cygni. We present 13 days of GBM observations of this
outburst including Earth occultation flux measurements, spectral and temporal
analysis. The Earth occultation fluxes reached 30 Crab with detected emission
to 100 keV and determined, via hardness ratios, that the source was in a hard
state. At high luminosity, spectral analysis between 8 and 300 keV showed that
the electron temperature decreased with increasing luminosity. This is expected
if the protons and electrons are in thermal equilibrium during an outburst with
the electrons cooled by the Compton scattering of softer seed photons from the
disk. However, the implied seed photon temperatures are unusually high,
suggesting a contribution from another source, such as the jet. No evidence of
state transitions is seen during this time period. The temporal analysis
reveals power spectra that can be modeled with two or three strong, broad
Lorentzians, similar to the power spectra of black hole binaries in their hard
state
“I’m Going to Live My Life Freely”: Authenticity as an Indicator of Belonging Among Urban Latinx LGBTQ+ Youth
While there is a growing body of scholarship on the experiences of LGBTQ+ youth in school and community settings, less is known about Latinx LGBTQ+ youth specifically. In response, this phenomenological study examined the experiences of eight Latinx LGBTQ+ youth relative to school and community belonging, with a specific focus on urban environments, using intersectionality and minority stress frameworks, and Lee and Robbins’ operational definition of belongingness. Three overarching themes emerged from the data: (a) navigating challenges, (b) the importance of an inclusive climate, and (c) thriving through adversity. Further, authenticity was identified as an additional indicator of belonging among Latinx LGBTQ+ youth. This article reviews the study’s findings, explores implications for Extension research and practice, and suggests strategies for educators and youth-serving professionals
Swift and Fermi observations of X-ray flares: the case of Late Internal Shock
Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a
unique broadband view of their afterglow emission, spanning more than ten
decades in energy. We present the sample of X-ray flares observed by both Swift
and Fermi during the first three years of Fermi operations. While bright in the
X-ray band, X-ray flares are often undetected at lower (optical), and higher
(MeV to GeV) energies. We show that this disfavors synchrotron self-Compton
processes as origin of the observed X-ray emission. We compare the broadband
properties of X-ray flares with the standard late internal shock model, and
find that, in this scenario, X-ray flares can be produced by a late-time
relativistic (Gamma>50) outflow at radii R~10^13-10^14 cm. This conclusion
holds only if the variability timescale is significantly shorter than the
observed flare duration, and implies that X-ray flares can directly probe the
activity of the GRB central engine.Comment: 13 pages, 4 figures, accepted for publication in Ap
- …