Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a
unique broadband view of their afterglow emission, spanning more than ten
decades in energy. We present the sample of X-ray flares observed by both Swift
and Fermi during the first three years of Fermi operations. While bright in the
X-ray band, X-ray flares are often undetected at lower (optical), and higher
(MeV to GeV) energies. We show that this disfavors synchrotron self-Compton
processes as origin of the observed X-ray emission. We compare the broadband
properties of X-ray flares with the standard late internal shock model, and
find that, in this scenario, X-ray flares can be produced by a late-time
relativistic (Gamma>50) outflow at radii R~10^13-10^14 cm. This conclusion
holds only if the variability timescale is significantly shorter than the
observed flare duration, and implies that X-ray flares can directly probe the
activity of the GRB central engine.Comment: 13 pages, 4 figures, accepted for publication in Ap