522 research outputs found
Jordan-Wigner Approach to Dynamic Correlations in 2D Spin-1/2 Models
We discuss the dynamic properties of the square-lattice spin-1/2 XY model
obtained using the two-dimensional Jordan-Wigner fermionization approach. We
argue the relevancy of the fermionic picture for interpreting the neutron
scattering measurements in the two-dimensional frustrated quantum magnet
Cs_2CuCl_4.Comment: Presented at 12-th Czech and Slovak Conference on Magnetism,
Ko\v{s}ice, 12-15 July 200
Finite-temperature perturbation theory for quasi-one-dimensional spin-1/2 Heisenberg antiferromagnets
We develop a finite-temperature perturbation theory for quasi-one-dimensional
quantum spin systems, in the manner suggested by H.J. Schulz (1996) and use
this formalism to study their dynamical response. The corrections to the
random-phase approximation formula for the dynamical magnetic susceptibility
obtained with this method involve multi-point correlation functions of the
one-dimensional theory on which the random-phase approximation expansion is
built. This ``anisotropic'' perturbation theory takes the form of a systematic
high-temperature expansion. This formalism is first applied to the estimation
of the N\'eel temperature of S=1/2 cubic lattice Heisenberg antiferromagnets.
It is then applied to the compound CsCuCl, a frustrated S=1/2
antiferromagnet with a Dzyaloshinskii-Moriya anisotropy. Using the next leading
order to the random-phase approximation, we determine the improved values for
the critical temperature and incommensurability. Despite the non-universal
character of these quantities, the calculated values are different by less than
a few percent from the experimental values for both compounds.Comment: 11 pages, 6 figure
Exotic quantum phases and phase transitions in correlated matter
We present a pedagogical overview of recent theoretical work on
unconventional quantum phases and quantum phase transitions in condensed matter
systems. Strong correlations between electrons can lead to a breakdown of two
traditional paradigms of solid state physics: Landau's theories of Fermi
liquids and phase transitions. We discuss two resulting "exotic" states of
matter: topological and critical spin liquids. These two quantum phases do not
display any long-range order even at zero temperature. In each case, we show
how a gauge theory description is useful to describe the new concepts of
topological order, fractionalization and deconfinement of excitations which can
be present in such spin liquids. We make brief connections, when possible, to
experiments in which the corresponding physics can be probed. Finally, we
review recent work on deconfined quantum critical points. The tone of these
lecture notes is expository: focus is on gaining a physical picture and
understanding, with technical details kept to a minimum.Comment: 22 pages, 15 figures; Notes of the Lectures at the International
Summer School on Fundamental Problems in Statistical Physics XI, September
2005, Leuven, Belgium; High-resolution version available at
http://w3-phystheo.ups-tlse.fr/~alet/leuven.htm
Suppression of orbital ordering by chemical pressure in FeSe1-xSx
We report a high-resolution angle-resolved photo-emission spectroscopy study
of the evolution of the electronic structure of FeSe1-xSx single crystals.
Isovalent S substitution onto the Se site constitutes a chemical pressure which
subtly modifies the electronic structure of FeSe at high temperatures and
induces a suppression of the tetragonal-symmetry-breaking structural transition
temperature from 87K to 58K for x=0.15. With increasing S substitution, we find
smaller splitting between bands with dyz and dxz orbital character and weaker
anisotropic distortions of the low temperature Fermi surfaces. These effects
evolve systematically as a function of both S substitution and temperature,
providing strong evidence that an orbital ordering is the underlying order
parameter of the structural transition in FeSe1-xSx. Finally, we detect the
small inner hole pocket for x=0.12, which is pushed below the Fermi level in
the orbitally-ordered low temperature Fermi surface of FeSe.Comment: Latex, 5 pages, 4 figure
Quantum renormalization of high energy excitations in the 2D Heisenberg antiferromagnet
We find using Monte Carlo simulations of the spin-1/2 2D square lattice
nearest neighbour quantum Heisenberg antiferromagnet that the high energy peak
locations at (pi,0) and (pi/2,pi/2) differ by about 6%, (pi/2,pi/2) being the
highest. This is a deviation from linear spin wave theory which predicts equal
magnon energies at these points.Comment: Final version, Latex using iopart & epsfi
Spin wave theory for antiferromagnetic XXZ spin model on a triangle lattice in the presence of an external magnetic field
Spin wave theory is applied to a quantum antiferromagnetic XXZ model on a
triangle lattice in the presence of an in-plane magnetic field. The effect of
the field is found to enhance the quantum fluctuation and to reduce the
sublattice magnetization at the intermediate field strength in the anisotropic
case. The possible implication to the field driven quantum phase transition
from a spin solid to a spin liquid is discussed.Comment: 5 pages,4 figure
Spin wave dispersion in La2CuO4
We calculate the antiferromagnetic spin wave dispersion in the half-filled
Hubbard model for a two-dimensional square lattice and find it to be in
excellent agreement with recent high-resolution inelastic neutron scattering
performed on La2CuO4 [Phys. Rev. Lett. 86, 5377 (2001)].Comment: typos correcte
The spin-1 two-dimensional J1-J2 Heisenberg antiferromagnet on a triangular lattice
The spin-1 Heisenberg antiferromagnet on a triangular lattice with the
nearest- and next-nearest-neighbor couplings, and , ,
is studied in the entire range of the parameter . Mori's projection operator
technique is used as a method which retains the rotation symmetry of spin
components and does not anticipate any magnetic ordering. For zero temperature
four second-order phase transitions are observed. At the
ground state is transformed from the long-range ordered spin
structure into a state with short-range ordering, which in its turn is changed
to a long-range ordered state with the ordering vector at . For
a new transition to a state with a short-range order occurs.
This state has a large correlation length which continuously grows with
until the establishment of a long-range order happens at . In
the range , the ordering vector is incommensurate. With growing
it moves along the line to the point which is reached at . The obtained state with a long-range order can be conceived as three
interpenetrating sublattices with the spin structure on each of
them.Comment: 13 pages, 5 figures, accepted for publication in Physics Letters
Kitaev interactions between j=1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum chemistry calculations
NaIrO, a honeycomb 5 oxide, has been recently identified as a
potential realization of the Kitaev spin lattice. The basic feature of this
spin model is that for each of the three metal-metal links emerging out of a
metal site, the Kitaev interaction connects only spin components perpendicular
to the plaquette defined by the magnetic ions and two bridging ligands. The
fact that reciprocally orthogonal spin components are coupled along the three
different links leads to strong frustration effects and nontrivial physics.
While the experiments indicate zigzag antiferromagnetic order in NaIrO,
the signs and relative strengths of the Kitaev and Heisenberg interactions are
still under debate. Herein we report results of ab initio many-body electronic
structure calculations and establish that the nearest-neighbor exchange is
strongly anisotropic with a dominant ferromagnetic Kitaev part, whereas the
Heisenberg contribution is significantly weaker and antiferromagnetic. The
calculations further reveal a strong sensitivity to tiny structural details
such as the bond angles. In addition to the large spin-orbit interactions, this
strong dependence on distortions of the IrO plaquettes singles out the
honeycomb 5 oxides as a new playground for the realization of
unconventional magnetic ground states and excitations in extended systems.Comment: 13 pages, 2 tables, 3 figures, accepted in NJ
- …
