522 research outputs found

    Jordan-Wigner Approach to Dynamic Correlations in 2D Spin-1/2 Models

    Full text link
    We discuss the dynamic properties of the square-lattice spin-1/2 XY model obtained using the two-dimensional Jordan-Wigner fermionization approach. We argue the relevancy of the fermionic picture for interpreting the neutron scattering measurements in the two-dimensional frustrated quantum magnet Cs_2CuCl_4.Comment: Presented at 12-th Czech and Slovak Conference on Magnetism, Ko\v{s}ice, 12-15 July 200

    Finite-temperature perturbation theory for quasi-one-dimensional spin-1/2 Heisenberg antiferromagnets

    Full text link
    We develop a finite-temperature perturbation theory for quasi-one-dimensional quantum spin systems, in the manner suggested by H.J. Schulz (1996) and use this formalism to study their dynamical response. The corrections to the random-phase approximation formula for the dynamical magnetic susceptibility obtained with this method involve multi-point correlation functions of the one-dimensional theory on which the random-phase approximation expansion is built. This ``anisotropic'' perturbation theory takes the form of a systematic high-temperature expansion. This formalism is first applied to the estimation of the N\'eel temperature of S=1/2 cubic lattice Heisenberg antiferromagnets. It is then applied to the compound Cs2_2CuCl4_4, a frustrated S=1/2 antiferromagnet with a Dzyaloshinskii-Moriya anisotropy. Using the next leading order to the random-phase approximation, we determine the improved values for the critical temperature and incommensurability. Despite the non-universal character of these quantities, the calculated values are different by less than a few percent from the experimental values for both compounds.Comment: 11 pages, 6 figure

    Exotic quantum phases and phase transitions in correlated matter

    Full text link
    We present a pedagogical overview of recent theoretical work on unconventional quantum phases and quantum phase transitions in condensed matter systems. Strong correlations between electrons can lead to a breakdown of two traditional paradigms of solid state physics: Landau's theories of Fermi liquids and phase transitions. We discuss two resulting "exotic" states of matter: topological and critical spin liquids. These two quantum phases do not display any long-range order even at zero temperature. In each case, we show how a gauge theory description is useful to describe the new concepts of topological order, fractionalization and deconfinement of excitations which can be present in such spin liquids. We make brief connections, when possible, to experiments in which the corresponding physics can be probed. Finally, we review recent work on deconfined quantum critical points. The tone of these lecture notes is expository: focus is on gaining a physical picture and understanding, with technical details kept to a minimum.Comment: 22 pages, 15 figures; Notes of the Lectures at the International Summer School on Fundamental Problems in Statistical Physics XI, September 2005, Leuven, Belgium; High-resolution version available at http://w3-phystheo.ups-tlse.fr/~alet/leuven.htm

    Suppression of orbital ordering by chemical pressure in FeSe1-xSx

    Full text link
    We report a high-resolution angle-resolved photo-emission spectroscopy study of the evolution of the electronic structure of FeSe1-xSx single crystals. Isovalent S substitution onto the Se site constitutes a chemical pressure which subtly modifies the electronic structure of FeSe at high temperatures and induces a suppression of the tetragonal-symmetry-breaking structural transition temperature from 87K to 58K for x=0.15. With increasing S substitution, we find smaller splitting between bands with dyz and dxz orbital character and weaker anisotropic distortions of the low temperature Fermi surfaces. These effects evolve systematically as a function of both S substitution and temperature, providing strong evidence that an orbital ordering is the underlying order parameter of the structural transition in FeSe1-xSx. Finally, we detect the small inner hole pocket for x=0.12, which is pushed below the Fermi level in the orbitally-ordered low temperature Fermi surface of FeSe.Comment: Latex, 5 pages, 4 figure

    Quantum renormalization of high energy excitations in the 2D Heisenberg antiferromagnet

    Full text link
    We find using Monte Carlo simulations of the spin-1/2 2D square lattice nearest neighbour quantum Heisenberg antiferromagnet that the high energy peak locations at (pi,0) and (pi/2,pi/2) differ by about 6%, (pi/2,pi/2) being the highest. This is a deviation from linear spin wave theory which predicts equal magnon energies at these points.Comment: Final version, Latex using iopart & epsfi

    Spin wave theory for antiferromagnetic XXZ spin model on a triangle lattice in the presence of an external magnetic field

    Full text link
    Spin wave theory is applied to a quantum antiferromagnetic XXZ model on a triangle lattice in the presence of an in-plane magnetic field. The effect of the field is found to enhance the quantum fluctuation and to reduce the sublattice magnetization at the intermediate field strength in the anisotropic case. The possible implication to the field driven quantum phase transition from a spin solid to a spin liquid is discussed.Comment: 5 pages,4 figure

    Spin wave dispersion in La2CuO4

    Full text link
    We calculate the antiferromagnetic spin wave dispersion in the half-filled Hubbard model for a two-dimensional square lattice and find it to be in excellent agreement with recent high-resolution inelastic neutron scattering performed on La2CuO4 [Phys. Rev. Lett. 86, 5377 (2001)].Comment: typos correcte

    The spin-1 two-dimensional J1-J2 Heisenberg antiferromagnet on a triangular lattice

    Full text link
    The spin-1 Heisenberg antiferromagnet on a triangular lattice with the nearest- and next-nearest-neighbor couplings, J1=(1p)JJ_1=(1-p)J and J2=pJJ_2=pJ, J>0J>0, is studied in the entire range of the parameter pp. Mori's projection operator technique is used as a method which retains the rotation symmetry of spin components and does not anticipate any magnetic ordering. For zero temperature four second-order phase transitions are observed. At p0.038p\approx 0.038 the ground state is transformed from the long-range ordered 120120^\circ spin structure into a state with short-range ordering, which in its turn is changed to a long-range ordered state with the ordering vector Q=(0,2π3){\bf Q^\prime}=\left(0,-\frac{2\pi}{\sqrt{3}}\right) at p0.2p\approx 0.2. For p0.5p\approx 0.5 a new transition to a state with a short-range order occurs. This state has a large correlation length which continuously grows with pp until the establishment of a long-range order happens at p0.65p \approx 0.65. In the range 0.5<p<0.960.5<p<0.96, the ordering vector is incommensurate. With growing pp it moves along the line QQ1{\bf Q'-Q}_1 to the point Q1=(0,4π33){\bf Q}_1=\left(0,-\frac{4\pi}{3\sqrt{3}}\right) which is reached at p0.96p\approx 0.96. The obtained state with a long-range order can be conceived as three interpenetrating sublattices with the 120120^\circ spin structure on each of them.Comment: 13 pages, 5 figures, accepted for publication in Physics Letters

    Kitaev interactions between j=1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum chemistry calculations

    Full text link
    Na2_2IrO3_3, a honeycomb 5d5d^5 oxide, has been recently identified as a potential realization of the Kitaev spin lattice. The basic feature of this spin model is that for each of the three metal-metal links emerging out of a metal site, the Kitaev interaction connects only spin components perpendicular to the plaquette defined by the magnetic ions and two bridging ligands. The fact that reciprocally orthogonal spin components are coupled along the three different links leads to strong frustration effects and nontrivial physics. While the experiments indicate zigzag antiferromagnetic order in Na2_2IrO3_3, the signs and relative strengths of the Kitaev and Heisenberg interactions are still under debate. Herein we report results of ab initio many-body electronic structure calculations and establish that the nearest-neighbor exchange is strongly anisotropic with a dominant ferromagnetic Kitaev part, whereas the Heisenberg contribution is significantly weaker and antiferromagnetic. The calculations further reveal a strong sensitivity to tiny structural details such as the bond angles. In addition to the large spin-orbit interactions, this strong dependence on distortions of the Ir2_2O2_2 plaquettes singles out the honeycomb 5d5d^5 oxides as a new playground for the realization of unconventional magnetic ground states and excitations in extended systems.Comment: 13 pages, 2 tables, 3 figures, accepted in NJ
    corecore